CHRONIC OBSTRUCTIVE PULMONARY DISEASE # Tiotropium for stable chronic obstructive pulmonary disease: a meta-analysis R G Barr, J Bourbeau, C A Camargo, F S F Ram Thorax 2006;61:854-862. doi: 10.1136/thx.2006.063271 See end of article for authors' affiliations Correspondence to: Dr R G Barr, Division of General Medicine, PH-9 East Room 105, Columbia University Medical Centre, 630 West 168th Street, New York, NY 10032, USA; rgb9@columbia.edu Received 29 March 2006 Accepted 16 June 2006 Published Online First 14 July 2006 **Background:** A systematic review was undertaken to evaluate the efficacy of tiotropium, a long acting anticholinergic drug, on clinical events, symptom scales, pulmonary function, and adverse events in stable chronic obstructive pulmonary disease (COPD). **Methods:** A systematic search was made of the Cochrane trials database, MEDLINE, EMBASE, CINAHL, and a hand search of 20 respiratory journals. Missing data were obtained from authors and the manufacturer. Randomised controlled trials of ≥ 12 weeks' duration comparing tiotropium with placebo, ipratropium bromide, or long acting β_2 agonists (LABA) were reviewed. Studies were pooled to yield odds ratios (OR) or weighted mean differences with 95% confidence intervals (CI). Results: Nine trials (8002 patients) met the inclusion criteria. Tiotropium reduced the odds of a COPD exacerbation (OR 0.73; 95% CI 0.66 to 0.81) and related hospitalisation (OR 0.68; 95% CI 0.54 to 0.84) but not pulmonary (OR 0.50; 95% CI 0.19 to 1.29) or all-cause (OR 0.96; 95% CI 0.63 to 1.47) mortality compared with placebo and ipratropium. Reductions in exacerbations and hospitalisations compared with LABA were not statistically significant. Similar patterns were evident for quality of life and symptom scales. Tiotropium yielded greater increases in forced expiratory volume in 1 second (FEV₁) and forced vital capacity (FVC) from baseline to 6–12 months than did placebo, ipratropium, and LABA. Decline in FEV₁ over 1 year was 30 ml (95% CI 7 to 53) slower with tiotropium than with placebo and ipratropium (data were not available for LABA). Reports of dry mouth and urinary tract infections were increased with tiotropium. Conclusions: Tiotropium reduced COPD exacerbations and related hospitalisations, improved quality of life and symptoms, and may have slowed the decline in FEV₁. Long term trials are warranted to evaluate the effects of tiotropium on decline in FEV₁ and to clarify its role compared with LABA. hronic obstructive pulmonary disease (COPD) is currently the fourth or fifth leading cause of death in the most developed countries, and is projected to be the third cause of death worldwide by 2020.¹ Despite this burden, few pharmacological treatments for COPD have been proved to reduce clinical events, and none has been shown definitively to slow decline in forced expiratory volume in 1 second (FEV₁). Tiotropium has a quaternary ammonium structure related to that of ipratropium bromide. It dissociates slowly from M_1 and M_3 receptors but rapidly from M_2 receptors,² which allows once daily dosing and has theoretical advantages since M_2 receptors are feedback inhibitory receptors.³ 4 A number of randomised clinical trials suggest that tiotropium might reduce clinical event rates and improve lung function, but these trials have been of borderline statistical power. We therefore undertook a meta-analysis of available randomised trials to evaluate the efficacy of tiotropium on clinical events, health related quality of life, symptoms, pulmonary function, and adverse events compared with placebo, ipratropium bromide, and long acting β_2 agonists (LABA). An earlier version of this meta-analysis was published electronically in the Cochrane Library.⁵ #### **METHODS** #### Data sources The Cochrane Airways Review Group Specialised Register of COPD trials is a compilation of references to reports of controlled clinical trials assembled from systematic searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and CINAHL, and supplemented by hand searching of leading respiratory journals and conference abstracts. It is not limited by language of publication. The Register was searched using the following terms: tiotropium OR "Ba 679 BR" OR Spiriva OR oxitropium. In addition, a search of LILACS and CENTRAL was performed. Searches were current as of May 2006. Reference lists of all primary studies and review articles were reviewed for additional references. Authors of identified randomised trials were asked about published and unpublished studies. The manufacturer of tiotropium (Boehringer Ingelheim) was contacted regarding overlap between studies, unpublished studies, and supplemental data. Additional data were obtained from the Food and Drug Administration website. #### Study selection The following criteria were used to select randomised controlled trials for inclusion in the meta-analysis: - Target population: stable COPD consistent with American Thoracic Society (ATS)/European Respiratory Society (ERS) criteria,⁷ without evidence of an exacerbation for 1 month prior to study entry; - Intervention: randomised clinical trials comparing tiotropium with placebo, ipratropium bromide, or LABA; - Methodological criteria: studies that followed patients for 12 weeks or more after randomisation. Two reviewers independently identified trials that appeared potentially relevant from titles and abstracts. **Abbreviations:** COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; FVC, forced vital capacity; LABA, long acting β_2 agonist; SGRQ, St George's Respiratory Questionnaire; TDI, Transitional Dyspnoea Index Using the abstract or the full text of each study, as necessary, two reviewers independently decided if trials fulfilled inclusion criteria for the review. Differences were resolved by discussion. # Data extraction and assessment of methodological quality Two reviewers independently extracted data. Intention-to-treat results were used whenever available. Primary clinical outcomes were COPD exacerbations, related hospitalisations, and all-cause mortality. Secondary outcomes included disease specific mortality, health related quality of life scales (St George's Respiratory Questionnaire [SGRQ]⁸), symptom scores (Transitional Dyspnea Index [TDI], a multidimensional measure of breathlessness'), change in trough FEV₁ and forced ventilatory capacity (FVC) from baseline and from steady state 8–15 days after randomisation, and adverse events (dry mouth, constipation, urinary infection and obstruction, chest pain, myocardial infarction, arrhythmias and congestive heart failure). Methodological quality was assessed using the Cochrane approach and Jadad criteria. ¹⁰ #### Statistical analysis Trials were combined using RevMan (Version 4.2.8). Fixed effect odds ratios (OR) for dichotomous variables and weighted mean differences (WMD) for continuous variables with 95% confidence intervals (CI) were calculated for individual trials. Trials were pooled using fixed effect OR or WMD as appropriate. Heterogeneity was tested using the Breslow-Day test with a p value <0.1 considered statistically significant. A random effects model was used if heterogeneity was found. Weighted averages of cumulative incidences in the control Figure 1 QUOROM flow diagram. groups were calculated across all trials and for trials of 12 months' duration. Numbers needed to treat (NNT) were calculated from the pooled OR, 95% CI, and cumulative incidences in the control groups of the 12 month trials.¹¹ For each outcome, trials were pooled within categories of control group (placebo, ipratropium, or LABA). Since an earlier large randomised clinical trial showed that ipratropium does not reduce clinical events or slow the decline in FEV₁ relative to placebo,^{12 13} summary estimates were calculated comparing tiotropium with placebo or ipratropium for these end points when there was statistical homogeneity across categories of control group. Adverse events were combined across all categories of control group when there was statistical homogeneity. Publication bias was examined in funnel plots and tested with a modified Macaskill's test. ¹⁴ The effects of tiotropium were examined across predefined subgroups by disease severity and concurrent LABA use. #### **RESULTS** Ninety nine articles were identified, of which 33 possibly fulfilled the inclusion criteria and 15 met the inclusion criteria (fig 1). Three of these articles reported the combined results of pairs of previously published and unpublished trials, and three others were secondary reports with overlapping participants. The net number of included trials was nine (8002 randomised patients). Table 1 shows the characteristics of the nine included trials. Six of the included trials compared tiotropium with placebo, one compared tiotropium with ipratropium,¹⁵ one compared tiotropium with a LABA (salmeterol),¹⁶ and one compared tiotropium with placebo and with salmeterol.¹⁷ Six trials scored four out of five for methodological quality, two scored five out of five,¹⁵ ¹⁸ and one scored three out of five.¹⁹ Allocation concealment was described in only one trial.¹⁵ The protocols were extremely similar. All trials enrolled patients regardless of response to bronchodilators but excluded patients with a prior history of asthma; all but one¹⁸ excluded patients with a history of atopy or allergic rhinitis; and six excluded patients with a raised eosinophil count. All trials prohibited the use of non-study ipratropium and all but one¹⁸ prohibited the use of non-study LABA. The weighted mean duration of the trials was 7.0 months (range 3–12). The severity of COPD was generally moderate to severe (ERS/ATS stage III–IV; range stage II–V); 38–80% of patients were taking ipratropium at enrolment, 32–50% were taking LABA, and 42–80% were taking inhaled corticosteroids. # Clinical events
COPD exacerbations The cumulative incidence of COPD exacerbations among controls was 35% over the mean duration (7.0 months) of all trials, and 52% in the 1 year trials. Tiotropium reduced COPD exacerbations compared with placebo and compared with ipratropium (fig 2A). The cumulative incidence of exacerbations was lower with tiotropium than with salmeterol, but this difference was smaller and not statistically significant. The treatment effect of tiotropium was statistically homogeneous across the control groups (p = 0.77) and the summary OR for tiotropium compared with placebo or ipratropium was 0.73 (95% CI 0.66 to 0.81). The corresponding NNT for tiotropium to prevent one exacerbation per year was 13 (95% CI 10 to 21). ## Hospitalisations for COPD exacerbations The cumulative incidence of exacerbation related hospitalisations among controls was 7% over the duration of all trials, and 9% in the 1 year trials. Tiotropium reduced the risk of hospitalisation for COPD exacerbations compared with placebo | Study | Duration of trial/no randomised/
pre-randomisation run-in | Inclusion criteria/exclusion criteria/participant characteristics | Permitted co-therapies/discontinued co-therapies
(% on co-therapy at baseline) | Control group intervention(s) | |-------------------------|--|--|--|--| | Beeh | 12 weeks
N=1639
1 week washout period | Inclusion: COPD, FEV ₁ <70% predicted, ratio <70%, age >40 years, smoking history >10 py Exulosion: saltma, allergic rhinitis, atopy, oxygen use, arrhythmia, recent MI or CHF hospitalisation. Characteristics: Mean age 62 years; 75% male; FEV ₁ : 1.3 (0.5) I; FVC 2.4 (0.7) I; | Permitted: SABA (76%), inhaled corticosteroid (57%), prednisone (16%), theophylline (52%) Discontinued: ipratropium (69%), LABA (50%) | Placebo | | Brusasco 17 | 6 months
N=1207
2 week washout period | ratio NA Includes: COPD, FEV₁ ≤ 65% predicted, ratio ≤ 70%, age >40 years, smoking history >10 py. Exclusion: saftma, allergic rhinitis, atopy, total easinophil count ≥600/mm³, oxygen use, URI <6 weeks, other significant disease Characteristics: Mean age 64 years; 76% male; FEV₁ 1.1 (0.41 ; FVC 2.6 (0.71 ; | Permithed: NA (Donohue ²⁰ lists SABA (66%), inhaled conicosteraid (66%), prednisone (6%), theophylline (21%)) Discontinued: NA (Donohue ²⁰ lists ipratropium (53%), LABA (NA)) | (1) Salmeterol 50 µg bid by MDI
(2) Placebo | | Briggs 16 | 12 weeks
N=653
2 week washout period | ratio 43 (10)% Inclusion: COPD, FEV, <60% predicted, ratio <70%, age >40 years, smoking Instancy >10 py Exclusion: asthma, allergic rhinitis, atopy, total eosinophil count >600/mm³, renal insufficiency, prostatic hypertraphy, glaucoma, other significant disease, COPD exacerbation <4 weeks, prednisone >10 mg/day, ß blackers, oxygen use, recent pulmonary retabolithation Characteristics: Mean age 64 years; 66% male; FEV, 1.0 (0.4) ; FVC 2.4 (0.7) ; | Permitted: SABA (58%), inhaled corticosteroid (50%), prednisone (2%)
Discontinued: iprotropium (55%), LABA (47%), theophylline (12%) | Salmeterol 50 µg bid by MDI | | Casaburi'' | 12 months
N=921
2 week washout period | ratio 43 (10)% histories (20Pt) EV₁ ≤65% predicted, ratio ≤70%, age ≥40 years, smoking history >10 years, smoking bistory >10 years, smoking bistory >10 years, and years, altergic thinitis, atopy, total eosinophil count ≥600/mm³, oxygen use, prednisone ≥10 mg in prior month, MI <1 year, CHF <3 years, arrhythmia Characteristics. Mean age 65 years; 65% male, FEV, 1.0 (0.41); FVC 2.3 (0.81); | Permithed: SABA (99%), inholed corticosteroid (42%), prednisone (7%), theophylline (23%) Discontinued: iprotropium (57%), LABA (NA) | Placebo | | Casaburi ^{.a} | 25 weeks
N=108
1 week training run-in | ratio 40 12.1/s Indiana: COPD, FEV ₁ ≤ 60% predicted, ratio < 70%, age ≥40 years, smoking history >10 py, dabe to perform pulmonary rehabilitation Exdusion: asthma, allergic rhinitis, atopy, total eosinophil count ≥600/mm³, BMI <18 or >30 kg/m², other significant disease, recent URI, MI, CHF, arrhythmia Characteristics: Mean age 67 years; 56% male, FEV₁ 0.9 (0.41); FVC% 3.4 (1.2); | Permited: SABA, inhaled and prednisone, theophylline (% NA)
Discontinued: ipratropium, LABA (% NA) | Placebo | | Dusser ²¹ | 48 weeks
N = 1050
3 week run-in | Inclusion: COD, pre-BD FEV, 30-65% predicted, FEV, 15VC <70%, age >40 years, smoking history > 10 py, ≥ 1 exacerbation in prior year. Exdusion: asthma, allergic rhinitis, atopy, renal insufficiency, oxygen use, COPD exacerbation<6 weeks, prednisone ≥ 10 mg/day, other significant medical illness contracteristics. Mean age: 65 years, 88% male, FEV, 1.4 [0.4] I; FVC 2.6 [0.8] I; | Permitted: SABA (94%), inhaled corticosteroid (63%), prednisone (2%) Discontinued: iprotropium (38%), LABA (32%), theophylline (7%) | Placebo | | Niewoehner 18 | 6 months
N=1829
No run-in period | ratio 2011;1% Inclusion: COD, FEV, < 60% predicted, ratio < 70%, age >40 years, smoking history >10 py Exclusion: softmar, renal insufficiency, prostatic hypertrophy, glaucoma, MI <6 months, arrhythmia of FF hospitalisation < 1 year, on cancer treatment, COPD exacerbation <4 weeks, prednisone >20 mg/day | Permitted: SABA (94%), LABA (38%), inhaled corticosteroid (58%), prednisone (10%), theophylline (14%), oxygen (29%) Discontinued: ipratropium (80%) | Placebo | | Verkindre ³¹ | 12 weeks
N=100
2 weeks run-in | Characteristics: Mean age 68 years; 95% male; FEV, 1.0 (0.4) 1; ratio 48 (11)% Inclusion: COPD, FEV, 1.50% predicted, RV < 125% predicted, age > 40 years, smeking history > 10 py, ≥ 1 exacerbation in previous year Exdusion: asthma, allergic rhinitis, atopy, total eosinophil count ≥600/mm³, ML <1 year, arrhythmia, CHF <3 years, oxygen use, COPD exacerbation <6 weeks, predintone ≥ 10 mg/day. | Permithed: SABA, inholed and prednisone, theophylline (% NA)
Discontinued: ipratropium, LABA (% NA) | Placebo | | Vincken 15 | 12 months
N=535
2 week washout period | ratio 40 (7)% Inclusion: COPD, FEV ₁ < 65% predicted, ratio < 70%, age >40 years, smoking inclusion: COPD, FEV ₁ < 65% predicted, ratio < 70%, age >40 years, smoking Exclusion: safhma, allergic rhinitis, atopy, total eosinophil count >600/mm³, oxygen use, recent UR, other significant disease (van Noord ²⁵ lists MI <1 year, CHF <3 years, arrhythmia, prostatic hypertrophy, glaucoma, anticholinergic drug allergy) anticorderistiss: Mean age 64 years; 85% male; FEV ₁ 1.2 (0.4); FVC 2.7 (0.8); ratio 46 (10)%. | Pernitted: SABA (76%), inholed conticosteroid (80%), prednisone (9%), theophyline (16%) biscontinued: iprotropium (60%), LABA (NA) | Ipratropium 40 µg qid by MDI | Figure 2 Summary effects of tiotropium on (A) COPD exacerbations, (B) hospitalisations, and (C) all-cause mortality. (fig 2B). Similar reductions in hospitalisations were observed compared with ipratropium and compared with salmeterol, but neither of these differences was statistically significant. The treatment effect of tiotropium was statistically homogeneous across the control groups (p = 0.76) and the summary estimate for tiotropium compared with placebo or ipratropium was OR 0.68 (95% CI 0.54 to 0.84). The corresponding NNT for tiotropium to prevent one exacerbation related hospitalisation per year was 38 (95% CI 26 to 76). #### Mortality Cumulative all-cause mortality among controls was 1.5% over the duration of all trials and 1.7% in the 1 year trials. There were no statistically significant differences in all-cause | Study
or sub-category | Tiotropium Control n/N n/N | | R (fixed)
95% CI | OR (fixed)
95% CI | |--|--|---------|------------------------------------|----------------------| | 01 vs placebo | | | | | | Brusasco 2003 | 150/348 | 92/309 | _ _ | 1.79 [1.29,2.47] | | Casabur i 2002 | 233/507 | 93/325 | | 2.12 [1.58,2.86] | | Subtotal (95% CI) | 855 | 634 | • | 1.96 [1.58,2.44] | | Total events: 383 (Tiotropium Test for heterogeneity: Chi ² Test for overall effect: Z = 6. | = 0.59, df = 1 (P = 0.44), I ² = 0% | 6 | | | | 02 vs ipratropium | | | _ | | | Vincken 2002 | 99/320 | 29/159 | | 2.01 [1.26,3.20] | | Subtotal (95% CI) | 320 | 159 | | 2.01 [1.26,3.20] | | Total events: 99 (Tiotropium
Test for heterogeneity: not a
Test for overall effect: Z = 2. | pplicable | | | | | 03 vs salmeterol | | | | | | Brusasco 2003 | 150/348 | 140/340 | - | 1.08 [0.80, 1.46] | | Subtotal (95% CI) | 348 | 340 | - | 1.08 [0.80,1.46] | | Total events: 150 (Tiotropiun | | | | | | Test for heterogeneity: not a | | | | | | Test for overall effect: $Z = 0$. | 51 (P = 0.61) | | | | | | | 0.2 | 0.5 1 2 | 5 | | | | | Favours control Favours tiotronium | n | Figure 3 Summary effects of tiotropium on clinically significant changes in (A) St George's Respiratory Questionnaire and (B) Transitional Dyspnoea mortality between tiotropium and placebo, ipratropium, or salmeterol (fig 2C). The trials were statistically homogeneous across the control groups (p = 0.57) and the summary estimate for tiotropium
compared with placebo or ipratropium was not significant (OR 0.96; 95% CI 0.63 to 1.47). Mortality from pulmonary causes was non-significantly lower with tiotropium compared with placebo or ipratropium (OR 0.50; 95% CI 0.19 to 1.29; fig S1 available online only at http://www.thoraxjnl.com/supplemental). Heterogeneity was not evident. There were no statistically significant differences for cardiovascular mortality (OR 1.17; 95% CI 0.54 to 2.51), cancer mortality (0.77; 95% CI 0.28 to 2.12), and mortality from other causes (OR 2.77; 95% CI 0.81 to 9.45). #### Health related quality of life and symptom scales St George's Respiratory Questionnaire (SGRQ) The mean change in SGRQ over the course of the trials was larger with tiotropium than with placebo (WMD -3.3; 95% CI -4.6 to -2.0) or with ipratropium (WMD -3.3; 95% CI -5.6 to -1.0). A smaller and non-significant difference was observed compared with salmeterol (WMD -1.4; 95% CI -3.2 to 0.4). The trials were statistically homogeneous across the control groups (p = 0.31) and the summary estimate for tiotropium compared with placebo or ipratropium was an improvement of WMD -3.3 (95% CI -4.7 to -2.2). Similar results were observed for the proportion with a clinically significant change in SGRQ (fig 3A), although there was evidence of heterogeneity across the control groups (p = 0.04). ## Transitional Dyspnoea Index (TDI) Data on mean change in TDI was inadequate for metaanalysis. The results for the proportion with a clinically significant change in TDI (fig 3B) were similar to those for SGRQ. There was evidence of heterogeneity across the control groups (p = 0.07). #### Spirometric indices #### Change in FEV₁ and FVC from baseline The mean improvement in trough FEV_1 from baseline to the end of the trials was greater with tiotropium than with placebo or ipratropium (fig 4A). A smaller but statistically significant difference was observed compared with salmeterol. There was evidence of statistical heterogeneity across the control groups (p<0.0001) which arose from the smaller mean difference compared with salmeterol. Similar results were seen for change in trough FVC from baseline (fig 4B). #### Change in FEV₁ and FVC from steady state The mean decline in trough FEV_1 from steady state was slower with tiotropium than with placebo (fig 5A). The treatment effect of tiotropium was similar to that of ipratropium, although the latter result was not statistically significant. The trials were statistically homogeneous across the control groups (p>0.99) and the summary estimate showed a WMD of 30 ml (95% CI 7 to 53 ml) slower decline in FEV_1 for tiotropium compared with placebo or ipratropium. Declines in trough FVC from steady state to the end of the two trials were heterogeneous (p = 0.08) and no statistically | A | Ch | anges in trough FEV | 1 | | | | |--|----------------|-----------------------------------|------|----------------------|-----------------------------|-------------------------| | Study
or sub-category | N | Tiotropium
Mean (SD) | N | Control
Mean (SD) | WMD (random)
95% CI | WMD (random)
95% CI | | 01 vs placebo | | | | | | | | Brusasco 2003 | 386 | 90.00(196.00) | 362 | -30.00(190.00) | = | 12.00 [92.33, 147.67] | | Casaburi 2002 | 518 | 110.00(234.00) | 328 | -40.00(193.00) | = | 150.00 [120.98, 179.02] | | Dusser 2006 | 485 | 90.00(220.00) | 495 | -30.00(222.00) | = | 120.00 [92.33, 147.67] | | Subtotal (95% CI) | 1389 | | 1185 | | ♦ | 129.54 [110.27, 148.83] | | Test for heterogeneity: Chi ² = | 2.82, df = 2 (| P = 0.24), I ² = 29.1% | | | ' | | | Test for overall effect: Z = 13. | 17 (P < 0.000 | 01) | | | | | | 02 vs ipratropium bromide | | | | | | | | /incken 2002 | 329 | 120.00(181.00) | 161 | -30.00(254.00) | ■ | 150.00 [106.16, 193.84] | | Subtotal (95% CI) | 329 | | 161 | | ▼ | 150.00 [106.16, 193.84] | | Test for heterogeneity: not app | plicable | | | | | | | Test for overall effect: Z = 6.7 | 1 (P < 0.0000 | 1) | | | | | | 03 vs salmeterol | | | | | | | | Briggs 2005 | 308 | 88.00(175.00) | 300 | 71.00(191.00) | = | 17.00 [–12.14, 46.14] | | Brusasco 2003 | 386 | 90.00(196.00) | 388 | 50.00(197.00) | = | 40.00 [12.31, 67.69] | | Subtotal (95% CI) | 694 | | 688 | | | 28.97 [6.45, 51.49] | | est for heterogeneity: Chi ² = | 1.26, df = 1 (| P = 0.26), I ² = 20.5% | | | | | | Test for overall effect: Z = 2.52 | 2 (P = 0.01) | | | | | | | | | | | | -1000 -500 0 500 | 1000 | | | | | | | Favours control Favours tid | otropium | | В | Ch | nanges in trough FVC | | | | | | |--|------------------------------|--------------------------------|------|----------------------|------------|-----------------------|-------------------------| | Study or sub-category | N | Tiotropium
Mean (SD) | N | Control
Mean (SD) | W | MD (random)
95% CI | WMD (random)
5% CI | | 01 vs placebo | | | | | | | | | Brusasco 2003 | 386 | 190.00(393.00) | 362 | -20.00(380.00) | | - | 210.00 [154.60, 265.40] | | Casaburi 2002 | 518 | 260.00(469.00) | 328 | -40.00(362.00) | | - | 300.00 [243.73, 356.27] | | Dusser 2006 | 483 | 120.00(440.00) | 495 | -50.00(445.00) | | - | 170.00 [114.53, 225.47] | | Subtotal (95% CI) | 1387 | | 1185 | | | • | 226.54 [151.51, 301.56] | | Test for heterogeneity: $Chi^2 = 1$
Test for overall effect: $Z = 5.92$ | | | | | | | | | 02 vs ipratropium bromide | | | | | | | | | Vincken 2002 | 329 | 320.00(544.00) | 161 | 110.00(507.00) | | | 210.00 [112.08, 307.92] | | Subtotal (95% CI) | 329 | | 161 | | | • | 210.00 [112.08, 307.92] | | Test for heterogeneity: not app
Test for overall effect: Z = 4.20 | |) | | | | | | | 03 vs salmeterol | | | | | | | | | Briggs 2005 | 308 | 149.00(369.00) | 300 | 85.00(382.00) | | = | 64.00 [4.28, 123.72] | | Brusasco 2003 | 386 | 190.00(393.00) | 388 | 100.00(394.00) | | = | 90.00 [34.56, 145.44] | | Subtotal (95% CI) | 694 | , | 688 | | | | 77.96 [37.33, 118.60] | | Test for heterogeneity: Chi ² = 0 | 0.39. df = 1 (| P = 0.53), I ² = 0% | | | | * | [21,125, 1,121,1] | | Test for overall effect: Z = 3.76 | | | | | | | | | | | * | | | | | | | | | | | | -1000 -500 | 0 500 | 1000 | | | Favours control Favours tiot | | | | | trol Favours tiotropi | ium | Figure 4 Summary effects of tiotropium on changes in (A) trough FEV1 and (B) trough FVC from baseline before randomisation until end of trials. significant differences were observed between tiotropium and either control group (fig 5B). #### Adverse events Available data on adverse events are summarised in table 2. Dry mouth was significantly increased with tiotropium compared with placebo, ipratropium and salmeterol, and urinary tract infections were significantly increased compared with placebo and ipratropium (data were not available for salmeterol). Consistent but not statistically significant increases were observed for systemic anticholinergic adverse events (constipation and urinary retention). Heterogeneity was evident for arrhythmias or atrial fibrillation overall and in comparison with placebo (p = 0.05). This heterogeneity resulted from one trial that reported atrial fibrillation results only. When this trial was excluded, heterogeneity was not evident (p = 0.71) and the frequency of arrhythmias was significantly higher with tiotropium than with placebo (OR 2.33; 95% CI 1.11 to 4.88). #### Subgroup and sensitivity analyses The trials were very similar with respect to disease severity and concurrent LABA use. The two trials with the highest baseline mean FEV_1^{20} had a statistically similar estimate for exacerbations as the pooled estimate and as a trial in which 29% of patients were on oxygen¹⁸ (fig 2). The effect of tiotropium on exacerbations in the one trial¹⁸ that permitted concurrent use of LABA (OR 0.81; 95% CI 0.66 to 0.99) was statistically similar to the others that withheld LABA (OR 0.70; 95% CI 0.62 to 0.80). Sensitivity analyses by quality weighting and random effects models yielded nearly identical results. Funnel plots for the primary end points showed no clear evidence of publication bias and the modified Macaskill test did not suggest publication bias for exacerbations (p = 0.65). #### DISCUSSION This systemic review of the currently available randomised trials of tiotropium for stable COPD showed that tiotropium reduced COPD exacerbations and related hospitalisations compared with placebo or ipratropium. Increases in FEV₁ and FVC from baseline were significantly larger with tiotropium than with placebo, ipratropium, and LABA. The decline in trough FEV₁ from steady state was slower with tiotropium than with placebo or ipratropium, and pulmonary mortality was non-significantly lower with tiotropium. The benefits observed with tiotropium for exacerbations and related hospitalisations were large and clinically important. Consistent with these findings, tiotropium has been shown to be cost effective although not cost saving compared with ipratropium in Europe.²² The magnitude of the reduction Figure 5 Summary effects of tiotropium on changes in (A) trough FEV₁ and (B) trough FVC from steady state 8 days after randomisation until end of trials (1 year). in exacerbation related hospitalisations with tiotropium was similar in comparison with placebo, ipratropium and salmeterol, and was similar in large placebo controlled trials that did and did not permit use of LABA. Changes in health related quality of life, symptom scales, and spirometric indices also appeared clinically significant. Compared with placebo and ipratropium, the mean change in the SGRQ across all participants was close to the clinically significant change in SGRQ of 4 units, and more participants on tiotropium achieved a clinically significant change in SQRQ and TDI compared with placebo and ipratropium. Improvements in spirometric indices from baseline were clinically significant
compared with placebo and ipratropium at a threshold for FEV₁ of 100 ml²³ but not at a threshold of 225 ml.²⁴ Improvements in spirometric indices from baseline were statistically but not clinically significant compared with salmeterol. The results of this systemic review are consistent with a previous review of treatments for COPD²⁵ which reported on exacerbations and quality of life but which was limited by double counting of patients randomised to tiotropium. Our results correct and extend that review with more than twice the number of randomised patients and additional outcomes of hospitalisations, mortality, symptom scales, spirometric indices, and adverse events. We found that the decline in trough FEV_1 from steady state was slower with tiotropium than with placebo or ipratropium. This difference was large relative to the difference observed in a meta-analysis of inhaled corticosteroids in $COPD^{26}$ and was consistent with a post hoc analysis of one of the tiotropium trials.²⁷ However, this observation should be interpreted with caution as it might be due to (1) incomplete attainment of steady state of tiotropium at 8 days; (2) chance, given that multiple spirometric indices were measured and that the duration of the relevant trials was only 1 year; and (3) bias, given that most but possibly not all trial results for this measure were available for meta-analysis. Larger longer term trials are necessary to assess the validity of this result, which would be of major clinical relevance if replicated. Mortality from pulmonary causes was non-significantly lower among those randomised to tiotropium compared with placebo or ipratropium. This finding suggests that observed benefits on exacerbations and hospitalisations might translate into reductions in pulmonary mortality, but requires evaluation in long term randomised trials designed specifically to examine pulmonary mortality. Estimates for disease-specific mortality can be subject to more biases than all-cause mortality, and we note that all-cause mortality did not differ appreciably between tiotropium and placebo. The trials included in this review were of good quality and used almost identical designs with regard to inclusion and exclusion criteria. The clinical homogeneity of the trials resulted in statistical homogeneity for most outcome measures across the trials. We calculated summary estimates of the effects of tiotropium compared with placebo and ipratropium. Heterogeneity would be introduced if ipratropium had an effect on the relevant outcomes, but ipratropium has been shown not **Table 2** Adverse events with tiotropium compared with placebo, ipratropium, and salmeterol, with summary estimates across all available data | | Tiotropium compar | red with | p value for | | | |-----------------------------------|-------------------|---------------|--------------|---------------|------------------| | | Placebo | Ipratropium | Salmeterol | heterogeneity | Summary estimate | | Dry mouth | | | | | | | Trials | 4 | 1 | 2 | 0.24 | 7 | | Participants | 2835 | 535 | 1460 | | 4830 | | Odds ratio | 4.6 | 2.1 | 4.7 | | 3.9 | | (95% CI) | (3.0 to 7.1) | (1.05 to 4.2) | (2.4 to 9.2) | | (2.8 to 5.5) | | Constipation | | | | | | | Trials | 2 | 1 | 0 | 0.41 | 3 | | Participants | 1931 | 535 | • | 0.41 | 2466 | | Odds ratio | 2.2 | 0.5 | | | 1.7 | | | | | | | | | (95% CI) | (0.95 to 4.8) | (0.1 to 3.6) | | | (0.8 to 3.7) | | Urinary retention | | | | | , | | Trials | 3 | 0 | 1 | 0.85 | 4 | | Participants | 2733 | | 807 | | 3540 | | Odds ratio | 2.5 | | 3.0 | | 2.6 | | (95% CI) | (0.5 to 14) | | (0.1 to 75) | | (0.6 to 12) | | Urinary tract infection | | | | | | | Trials | 3 | 1 | 0 | 0.91 | 4 | | Participants | 2733 | 535 | | | 3268 | | Odds ratio | 1.6 | 1.8 | | | 1.6 | | (95% CI) | (0.97 to 2.6) | (0.6 to 5.5) | | | (1.03 to 2.6) | | Chest pain | | | | | | | Trials | 3 | 1 | 1 | 0.09 | _ | | Participants | 2733 | 535 | 807 | 0.07 | | | | | | | | | | Odds ratio | 0.9 | 2.5 | 1.2 | | | | (95% CI) | (0.4 to 2.0) | (0.8 to 7.4) | (0.6 to 2.4) | | | | Myocardial infarction | | | | | | | Trials | 3 | 1 | 0 | 0.77 | 4 | | Participants | 2733 | 535 | | | 3268 | | Odds ratio | 1.0 | 1.5 | | | 1.1 | | (95% CI) | (0.2 to 3.9) | (0.2 to 15) | | | (0.3 to 3.6) | | Arrhythmia or atrial fibrillation | | | | | | | Trials | 4 | 1 | 0 | 0.05 | _ | | Participants | 4561 | 535 | | | | | Odds ratio | 1.4 | 0.8 | | | | | (95% CI) | (0.4 to 5.7) | (0.3 to 1.8) | | | | | Congestive heart failure | | | | | | | Trials | 3 | 1 | 0 | 0.86 | 4 | | Participants | 2837 | 535 | U | 0.00 | 3372 | | Odds ratio | 0.8 | 0.5 | | | 0.8 | | | | | | | | | (95% CI) | (0.4 to 1.6) | (0.1 to 8.1) | | | (0.4 to 1.5) | to alter the long term decline in ${\rm FEV_1}$, hospitalisations or survival compared with placebo. LABA, on the other hand, may reduce exacerbations compared with placebo. 25 28 Potential limitations of meta-analyses include double counting of patients from overlapping publications, publication bias, reporting bias, and selection bias from differential inclusion of available trials. We avoided double counting by discussing trial overlap with the primary authors and the manufacturer of tiotropium, and evaluated for publication bias with funnel plots and statistical tests. Selective reporting of secondary end points and of non-intention to treat reports in published manuscripts may bias results; we minimised this bias by obtaining supplemental data for five of the nine included studies, although complete intention to treat analyses were missing for most studies due to missing data. We avoided selection bias by pre-specified inclusion and exclusion criteria, a systematic search, and independent evaluation of trial inclusion by two reviewers. In conclusion, tiotropium reduced COPD exacerbations and exacerbation related hospitalisations compared with placebo or ipratropium. It also improved health related quality of life and symptom scores and can be recommended for the treatment of stable COPD. The results of this systematic review suggest that tiotropium may slow the decline in FEV₁, although this finding requires confirmation in additional long term randomised clinical trials. # **ACKNOWLEDGEMENTS** The authors thank Maria Martinez-Torres for assistance with manuscript preparation and various individuals at Boehringer-Ingelheim who helped provide unpublished data to strengthen this systematic review. The assistance of Phillippa Poole (Cochrane Airways Review Group co-editor) was greatly appreciated. Figure S1 showing mortality from pulmonary causes, cardiovascular causes, cancer and other causes is available online at http://www.thoraxinl.com/supplemental. #### Authors' affiliations R G Barr, Irving Assistant Professor of Medicine and Epidemiology, Columbia University Medical Centre, New York, NY, USA J Bourbeau, Associate Professor of Medicine, McGill University Health Centre, Montreal, Quebec, Canada C A Camargo, Associate Professor of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA F S F Ram, Senior Lecturer in Respiratory Medicine and Clinical Pharmacology, School of Health Sciences, Massey University, Auckland, Funding: Robert Wood Johnson Generalist Physician Faculty Scholar Award and National Institutes of Health (USA) HL075476, HL077612, Competing interests: Dr Barr: none. Dr Bourbeau has received honoraria for CME, membership on advisory boards and financial support from government agencies, contract and investigator initiated research studies for a number of companies including Altana, Astra Zeneca, Bayer, Boehringer-Ingelheim, GlaxoSmithKline, Novartis and Pfizer. Dr Camargo has received investigator initiated grants and consulting/ lecture honoraria from AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, and Novartis. Dr Ram: none. #### REFERENCES - Murray CJL, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. *Lancet* 1997:**349**:1498–504. - 2 Haddad E, Mak J, Barnes P. Characterization of 3H Ba 679 BR, a slowly dissociation muscarinic antagonist, in human lung: radioligand binding and autoradiographic mapping. Mol Pharmacol 1994;45:899-907. - 3 Disse B, Speck GA, Rominger KL, et al. Tiotropium (Spiriva): mechanistical considerations and clinical profile in obstructive lung disease. Life Sci 1999;64:457-64. - 4 Barnes PJ. The pharmacological properties of tiotropium. Chest 2000;117(2 Suppl):63-6S. - 5 Barr RG, Bourbeau J, Camargo CA Jr, et al. Inhaled tiotropium for stable chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews, 2005; Issue 2. - 6 Food and Drug Administration, Pulmonary-Allergy Drugs Advisory Committee. Clinical briefing document. Integrated review of safety, NDA 21-395.Food and Drug Administration, 2002. - Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 2004;23:932-46. - 8 Jones PW, Quirk FH, Baveystock CM, et al. A self-complete measure of health status for chronic airflow limitation. The St George's Respiratory Questionnaire. Am Rev Respir Dis 1992;145:1321-7. - Mahler DA, Weinberg DH, Wells CK, et al. The measurement of dyspnea: contents, interobserver agreement, and physiologic correlates of two new clinical indexes. *Chest* 1984;**85**:751–8. - 10 Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996:17:1-12 - 11 Cates C. Visual Rx. www.nntonline.net,, 2006. - 12 Anthonisen NR, Connett JE, Enright PL, et al. Hospitalizations and mortality in the Lung Health Study. Am J Respir Crit Care Med 2002;166:333-9. - 13 Anthonisen NR, Connett JE, Kiley JP, et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV₁. The Lung Health Study. JAMA 1994;**272**:1497–505. - 14 Macaskill P, Walter
SD, Irwig L. A comparison of methods to detect publication bias in meta-analysis. Stat Med 2001;20:641-54. - Vincken W, van Noord JA, Greefhorst AP, et al. Dutch/Belgium Tiotropium Study Group. Improved health outcomes in patients with COPD during one year's treatment with tiotropium. Eur Respir J 2002;19:209-16. - 16 Briggs DD Jr, Covelli H, Lapidus R, et al. Improved daytime spirometric efficacy of tiotropium compared with salmeterol in patients with COPD. Pulm Pharmacol Ther 2005:18:397-404. - 17 Brusasco V, Hodder R, Miravitlles M, et al. Health outcomes following treatment for six months with once daily tiotropium compared with twice daily salmeterol in patients with COPD. *Thorax* 2003;**58**:399–404. - 18 Niewoehner D, Rice K, Cote C, et al. Prevention of exacerbations of chronic obstructive pulmonary disease with tiotropium, a once-daily inhaled anticholinergic bronchodilator. A randomized trial. Ann Intern Med 2005;143:317-26. - Casaburi R, Mahler DA, Jones PW, et al. A long-term evaluation of once-daily inhaled tiotropium in chronic obstructive pulmonary disease. Eur Respir J 2002;**19**:217–24. - 20 Beeh KM, Beier J, Buhl R, et al. Efficacy of tiotropium bromide (Spiriva) in patients with chronic obstructive pulmonary disease (COPD) of different severities (in German). Pneumologie 2006;60:341-6. - 21 Dusser D, Bravo M-L, Iacono P, on behalf of the MISTRAL Study Group. The effect of tiotropium on exacerbations and airflow in patients with COPD. Eur Respir J 2006;**27**:547–55. - 22 Oostenbrink JB, Rutten-van Molken MP, Al MJ, et al. One-year costeffectiveness of tiotropium versus ipratropium to treat chronic obstructive oulmonary disease. Eur Respir J 2004;**23**:241–9. - 23 Redelmeier DA, Goldstein RS, Min ST, et al. Spirometry and dyspnea in atients with COPD. When small differences mean little. Chest 1996;**109**:1163–8. - 24 Herpel LB, Kanner RE, Lee SM, et al. Variability of spirometry in chronic obstructive pulmonary disease: results from two clinical trials. Am J Respir Crit Care Med 2006; 173:1106-13. - 25 Sin DD, McAlister FA, Anthonisen NR, et al. Contemporary management of chronic obstructive pulmonary disease: scientific review. JAMA 2003;**290**:2301–12 - 26 Sutherland ER, Allmers H, Ayas NT, et al. Inhaled corticosteroids reduce the progression of airflow limitation in chronic obstructive pulmonary disease: a meta-analysis. *Thorax* 2003;**58**:937–41. - Anzueto A, Tashkin D, Menjoge S, et al. One-year analysis of longitudinal changes in spirometry in patients with COPD receiving tiotropium. *Pulm Pharmacol Ther* 2005;**18**:75–81. - 28 Mahler DA, Donohue JF, Barbee RA, et al. Efficacy of salmeterol xinafoate in the treatment of COPD. Chest 1999;115:957-65. - 29 Donohue JF, van Noord JA, Bateman ED, et al. A 6-month, placebocontrolled study comparing lung function and health status changes in COPD patients treated with tiotropium or salmeterol. Chest 2002;122:47-55. - Casaburi R, Kukafka D, Cooper CB, et al. Improvement in exercise tolerance with the combination of tiotropium and pulmonary rehabilitation in patients with COPD. Chest 2005;127:809-17. - Verkindre C, Bart F, Aquilaniu B, et al. The effect of tiotropium on hyperinflation and exercise capacity in chronic obstructive pulmonary disease. Respiration 2006;**73**:420–7. - 32 van Noord JA, Bantje TA, Eland ME, et al. A randomised controlled comparison of tiotropium and ipratropium in the treatment of chronic obstructive pulmonary disease. The Dutch Tiotropium Study Group. Thorax 2000;**55**:289–94. - 33 O'Connor BJ, Towse LJ, Barnes PJ. Prolonged effect of tiotropium bromide on methacholine-induced bronchoconstriction in asthma. Am J Respir Crit Care Med 1996; 154:876-80. - Terzano C, Petroianni A, Ricci A, et al. Early protective effects of tiotropium bromide in patients with airways hyperresponsiveness. Eur Rev Med Pharmacol Sci 2004;8:259-64. - 35 Maesen FP, Smeets JJ, Costongs MA, et al. Ba 679 Br, a new long-acting antimuscarinic bronchodilator: a pilot dose-escalation study in COPD. Eur Respir J 1993;6:1031-6. - Maesen FPV, Smeets JJ, Sledsens TJ, et al. Tiotropium bromide, a new longacting anti-muscarinic bronchodilator: a pharmacodynamic study in patients with chronic obstructive pulmonary disease (COPD). Dutch Study Group. Eur Respir J 1995;**8**:1506–13. - Lither MR, llowite JS, Tashkin DP, et al. Long-acting bronchodilation with once-daily dosing of tiotropium (Spiriva) in stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000;161:1136-42. - van Noord JA, Smeets JJ, Custers FL, et al. Pharmacodynamic steady state of tiotropium in patients with chronic obstructive pulmonary disease. Eur Respir J 2002:19:639-44. - 39 Celli B, ZuWallack R, Wang S, et al. Improvement in resting inspiratory capacity and hyperinflation with tiotropium in COPD patients with increased static lung volumes. Chest 2003;124:1743-8. - Calverley PM, Lee A, Towse L, et al. Effect of tiotropium bromide on circadian variation in airflow limitation in chronic obstructive pulmonary disease. Thorax 2003;58:855-60. - Cazzola M, Di Marco F, Santus P, et al. The pharmacodynamic effects of single inhaled doses of formaterol, tiotropium and their combination in patients with COPD. *Pulm Pharmacol Ther* 2004;**17**:35–9. - Cazzola M, Centanni S, Santus P, et al. The functional impact of adding salmeterol and tiotropium in patients with stable COPD. Respir Med 2004;**98**:1214–21 - 43 O'Donnell DE, Fluge T, Gerken F, et al. Effects of tiotropium on lung hyperinflation, - dyspnoea and exercise tolerance in COPD. Eur Respir J 2004;23:832–40. Hasani A, Toms N, Agnew JE, et al. The effect of inhaled tiotropium bromide on lung mucociliary clearance in patients with COPD. Chest 2004;125:1726–34. - 45 McNicholas WT, Calverley PM, Lee A, et al. Long-acting inhaled anticholinergic therapy improves sleeping oxygen saturation in COPD. *Eur Respir J* 2004;**23**:825–31. - Cazzola M, Noschese P, Salzillo A, et al. Bronchodilator response to - formaterol after regular tiotropium or to tiotropium after regular formaterol in COPD patients. Respir Med 2005;99:524–8. Baloira Villar A, Vilarino Pombo C. [Bronchodilator efficacy of combined salmeterol and tiotropium in patients with chronic obstructive pulmonary disease]. Arch Bronconeumol 2005;41:130–4. - 48 Maltais F, Hamilton A, Marciniuk D, et al. Improvements in symptom-limited exercise performance over 8 h with once-daily tiotropium in patients with COPD. Chest 2005; **128**:1168–78. - Kim SJ, Kim MS, Lee SH, et al. A comparison of tiotropium 18 μg, once daily and ipratropium 40 μ g, 4 times daily, in a double-blind, double-dummy, efficacy and safety study in adults with chronic obstructive pulmonary disease (Korean). Korean Tuberc Respir Dis 2005;**58**:498–506. - van Noord JA, Aumann JL, Janssens E, et al. Comparison of tiotropium once daily, formoterol twice daily and both combined once daily in patients with COPD. Eur Respir J 2005;**26**:214–22. - Casaburi R, Briggs DD, Donohue JF, et al. The spirometric efficacy of oncedaily dosing with tiotropium in stable COPD: a 13-week multicenter trial. The US Tiotropium Study Group. Chest 2000;118:1294–302. Donohue JF, Menjoge S, Kesten S. Tolerance to bronchodilating effects of salmeteral in COPD. Respir Med 2003;97:1014–20. - 53 Tashkin D, Kesten S. Long-term treatment benefits with tiotropium in COPD patients with and without short-term bronchodilator responses. Chest 2003:123:1441-9. PostScript 191 systematic sampling, but is avoided in trials with patients prospectively randomised and analysed on an intention-to-treat basis. We emphasise that we did not perform any stage-based subanalyses, but compared the whole CMLND population with the systematic sampling group. The exclusions after randomisation clearly should not have occurred, but were adequately reported. In all, 25 patients had small-cell cancer or a non-malignant pathology, 48 had incomplete primary resection, 5 turned out to have metastatic deposits from other sites and 15 were excluded because of upstaging to IIIB or IV only. The exclusions were well matched, with 52 occurring in the CMLND group and 41 in the systematic sampling group. We therefore believe this had little effect on the overall analysis. It should also be mentioned that in one of the trials, only patients with cT1N0 adenocarcinoma of ≤2 cm diameter were randomised. Mechanistically, the authors hypothesised that this is the group least likely to benefit from CMLND; however, their inclusion in the pooled analysis still resulted in a clear benefit in favour of CMLND. In fact, the pooled hazard ratio of 0.78 is superior to that of adjuvant chemotherapy meta-analyses4 that have created such enthusiasm in lung cancer circles of late. Therefore, we are concerned that as a result of this editorial, groups treating lung cancer may not demand from their surgeons that which they are demanding from their oncologists—an evidence-based medical improvement in survival with an adjuvant intervention. We also await the results of the ACOSOG Z30 trial,⁵ which will address this question for patients in clinical stage I. This will also allow a pooled analysis of 1959 patients, which should be able to put this question to rest after 50 years of controversy. Until then, the level I evidence is that CMLND should be performed as part of the surgical treatment of patients with stage I–IIIA non-small-cell lung cancer. #### Gavin M Wright Correspondence to: G M Wright, St Vincent's Hospital, 55 Victoria Parade Fitzroy, Melbourne 3065, Victoria, Australia; gavin.wright@svhm.org.au Competing interests: None declared. #### References Wright G, Manser RL, Byrnes G, et al. Surgery for non-small cell lung cancer: systematic review and meta-analysis of randomised controlled trials. Thorax 2006;61:597-603. 2 Holty J-EC, Gould MK. When in doubt should we cut it out? The role of surgery in non-small cell lung cancer. Thorax 2006;61:554-6. 3 Feinstein AR, Sosin
DM, Wells CK. The Will Rogers phenomenon. Stage migration and new diagnostic techniques as a source of misleading statistics for survival in cancer. N Engl J Med 1985;312:1604–8. 4 Pignon JP, Tirbodet H, Scagliotti GV, et al. Lung Adjuvant Cisplatin Evaluation: a pooled analysis of five randomised clinical trials including 4,584 patients. Proc Am Soc Clin Oncol 2006;24(Part 1):No 188, 7008. 5 Allen MS, Darling GE, Pechet TT, et al. Morbidity and mortality of major pulmonary resections in patients with early-stage lung cancer: initial results of the randomized, prospective ACOSOG Z0030 trial. Ann Thorac Surg 2006;81:1013–19. #### Authors' reply We thank Dr Wright for his comments, but respectfully disagree. Although it is certainly possible that complete mediastinal lymph node dissection (CMLD) might improve survival in non-small-cell lung cancer (NSCLC), all three of the studies performed to date were limited by stage migration and other biases. Although overall exclusions were matched, we do not know whether exclusions due to upstaging were necessarily matched between study arms. In fact, limited data from the studies suggest that they were not. In the study by Wu et al, after post-randomisation exclusions, there were more patients with stage I (42% v 24%) and fewer with stage IIIa (28% v 48%) in the lymph node sampling group than in the CMLD group. Furthermore, the authors of one of the other three included studies concluded that stage migration might have resulted in an observed survival benefit for patients undergoing CMLD,² and a previous systematic review on CMLD in NSCLC also concluded that stage migration existed for two of the three included studies. In addition, there are other limitations. For example, because the study by Sugi et al4 included only patients with peripheral NSCLC <2 cm, the results are not generalisable to all patients with early-stage disease. The study by Wu et al had unequal follow-up between study arms.13 The study by Izbicki et al2 had significantly more patients with squamous cell carcinoma in the lymph node sampling group (53%) than in the CMLD group (32%, p = 0.03). Finally, two of the three studies were unblinded during follow-up.14 Even if a small survival benefit exists, this must be weighed against the substantially higher morbidity for patients undergoing CMLD reported in two of the three included studies.24 The results of the ACOSOG Z30 trial should help address these trade-offs. J-E C Holty Center for Primary Care and Outcomes Research, Stanford, University, Stanford, California, USA #### M K Gould VA Palo Alto Health Care System, Palo Alto, California, USA; Stanford University Medical Center, Palo Alto, California, USA; Center for Primary Care and Outcomes Research, Stanford University, Stanford, California, Correspondence to: Dr J-E C Holty, Division of Pulmonary and Critical Care Medicine, University School of Medicine, 300 Pasteur Drive, H3143, Stanford, CA 94305-5236, USA; jholty@stanford.edu Competing interests: None declared. #### References - Wu YL, Huang ZF, Wang SY, et al. A randomized trial of systematic nodal dissection in resectable non-small cell lung cancer. Lung Cancer 2002;36:1-6. - 2 Izbicki J, Passlick B, Pantel K, et al. Effectiveness of radical systematic mediastinal lymphadenectomy in patients with resectable non-small cell lung cancer: results of a prospective randomized trial. Ann Surg 1998;227:138–44. - 3 Barnard J, Dunning J, Musleh G, et al. Is there a role for the use of radical lymph node dissection in the surgical management of resectable non-small cell lung cancer? Interact Cardiovasc Thorac Surg 2004;3:294–9. - 4 Sugi K, Nawata K, Fujita N, et al. Systematic lymph node dissection for clinically diagnosed peripheral non-small-cell lung cancer less than 2 cm in diameter. World J Sura 1998:22:290-5. - diameter. World J Surg 1998;22:290–5. 5 Allen MS, Darling GE, Pechet TTV, et al. Morbidity and mortality of major pulmonary resections in patients with early-stage lung cancer: initial results of the randomized, prospective ACOSOG Z0030 trial. Ann Thorac Surg 2006;81:1013–20. ## CORRECTION doi: 10.1136/thx.2006.063271corr1 The authors of the article entitled "Tiotropium for stable chronic obstructive pulmonary disease: a meta-analysis" (Barr RG, Bourbeau J, Camargo CA, et al. Thorax 2006;**61**:854–62), published in the October issue, have noticed an error in figure 1. Reference 26 in figure 1 should refer to a paper not in the reference list: Witek TJ Jr, Mahler DA. Minimal important difference of the transition dyspnoea index in a multinational clinical trial. Eur Respir J 2003;21:267–72. Where reference 26 is cited in the text this correctly refers to the paper listed in the reference list. Figure S1 # (A) Mortality from Pulmonary Causes # (B) Mortality from Cardiovascular Causes # (C) Mortality from Cancer Causes # (D) Mortality from Other Causes