C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease

S F P Man, J E Connett, N R Anthonisen, R A Wise, D P Tashkin, D D Sin

Background: Although C-reactive protein (CRP) levels are increased in chronic obstructive pulmonary disease (COPD), it is not certain whether they are associated with adverse clinical outcomes.

Methods: Serum CRP levels were measured in 4803 participants in the Lung Health Study with mild to moderate COPD. The risk of all-cause and disease specific causes of mortality was determined as well as cardiovascular event rates, adjusting for important covariates such as age, sex, cigarette smoking, and lung function. Cardiovascular events were defined as death from coronary heart disease or stroke, or non-fatal myocardial infarction or stroke requiring admission to hospital.

Results: CRP levels were associated with all-cause, cardiovascular, and cancer specific causes of mortality. Individuals in the highest quintile of CRP had a relative risk (RR) for all-cause mortality of 1.79 (95% confidence interval (CI) 1.25 to 2.56) compared with those in the lowest quintile of CRP. For cardiovascular events and cancer deaths the corresponding RRs were 1.51 (95% CI 1.20 to 1.90) and 1.85 (95% CI 1.10 to 3.13), respectively. CRP levels were also associated with an accelerated decline in forced expiratory volume in 1 second (p<0.001). The discriminative property of CRP was greatest during the first year of measurement and decayed over time. Comparing the highest and lowest CRP quintiles, the RR was 4.03 (95% CI 1.23 to 13.21) for 1 year mortality, 3.30 (95% CI 1.38 to 7.86) for 2 year mortality, and 1.82 (95% CI 1.22 to 2.68) for >5 year mortality.

Conclusions: CRP measurements provide incremental prognostic information beyond that achieved by traditional markers of prognosis in patients with mild to moderate COPD, and may enable more accurate detection of patients at a high risk of mortality.

CHRONIC OBSTRUCTIVE PULMONARY DISEASE

At the fifth annual visit a venipuncture was carried out on participants who attended their LHS clinics. At year 5, 5413 participants were alive and were eligible for venipuncture. Of these, 4803 provided serum samples (89% of eligible participants). At this visit the participants were also asked to consent for additional follow up (LHS 3). During the follow up of LHS 3, the vital status and hospitalisation records of participants were captured biannually. If a participant had been admitted to hospital, copies of essential documents were obtained from hospital record rooms. Records that made significant mention of respiratory disease, cardiovascular disease, or cancer were forwarded to the morbidity and mortality review board of the study for definitive coding. The morbidity and mortality review board was also responsible for classifying the causes of death for all participants who died during the study. They reviewed death certificates, necropsy reports, relevant hospital records, and summaries of interviews with attending physicians or eye witnesses. These data were supplemented by linkages with a National Death Index which provided the date and cause of death for all US study participants through the end of 2001. Vital status was successfully determined for 98.3% of the participants.24 Mortality end points were classified into: coronary heart disease, cardiovascular disease (which also included coronary heart disease), lung cancer, other cancer, respiratory disease excluding lung cancer, other, and unknown.

Measurements of CRP
After collection the blood samples were separated into their various components. They were then shipped to the LHS data coordinating centre on dry ice and kept in −70°C freezers until use. The serum samples were thawed once for CRP determination. The levels of CRP were measured using highly sensitive enzyme linked immunosorbent assay kits (Alpha Diagnostics, San Antonio, TX, USA). All assays were measured at the James Hogg iCAPTURE Center (University of British Columbia, Vancouver, Canada) by laboratory personnel who were unaware of the clinical outcomes of the study participants. All assays were performed in triplicate. The median interassay coefficient of variation was 6.3%.

Statistical analysis
The primary relationship of interest was between serum CRP levels and all-cause mortality. Other end points were considered secondary in nature. All individuals who died or were lost to follow up before visit 5 were censored. CRP values were divided into quintiles from the lowest to the highest levels. We compared the risk of all-cause mortality across the CRP quintiles over the follow up period using a Cox proportional hazards model in which the following covariates were adjusted for: sex, race, age (in quintiles), body mass index (BMI) (in quintiles), pack-years of smoking (in quintiles), biochemically validated smoking status (continued smokers, sustained quitters, or intermittent quitters), rate of decline in FEV1, during the first 5 years of follow up (in quintiles), and percentage predicted FEV1 (in quintiles). To determine the relationship between CRP and cardiovascular disease events, defined as either fatal or non-fatal cardiovascular disease hospital admissions, we used the same model as for all-cause mortality. Multiple regression modelling was used to determine the relationship between CRP quintiles and the rate of decline in FEV1. We have previously shown in this cohort that the slope of FEV1 decline over the first 5 years of follow up reliably predicts the rate of decline over much longer periods of follow up (over 11 years).14 Because CRP was non-normally distributed, for certain analyses we log transformed CRP values to achieve normality.

To determine whether the predictive (discriminative) power of baseline CRP levels decayed over time, we ran a series of logistic regression models in which we determined all-cause mortality rates from 1 to >5 years of follow up. From these models we determined the area under the receiver operating characteristic curve (also known as C statistic) of baseline CRP. The C statistic can range from 0.5 (model discrimination no better than by chance) to 1.0 (perfect model discrimination). We then constructed a multiple logistic regression model in which sex, race, age (in quintiles), BMI (in quintiles), biochemically validated smoking status, and percentage predicted FEV1 (in quintiles), together with serum CRP levels, were included as potential covariates to predict 1 year mortality. We used a stepwise selection process to select variables that had a p value of 0.20 or less in the univariate model and 0.10 or less in the multivariate model.13 Discrimination of the model was assessed by the C statistic and calibration was assessed using the Hosmer and Lemeshow χ² statistic (p>0.05 for all models). We also did this for longer term mortality but the discriminative power of baseline measurements diminished significantly over time.

Continuous variables are presented as mean (SD) unless otherwise specified. All analyses were performed using SAS software version 9.1 (SAS Institute, Careuy, NC, USA). p

Table 1 Characteristics of participants in the Lung Health Study according to quintiles of baseline CRP levels

<table>
<thead>
<tr>
<th>CRP (mg/l)</th>
<th>Age (years)</th>
<th>Men</th>
<th>Women</th>
<th>Pack-years of smoking</th>
<th>Continued smokers</th>
<th>Intermittent smokers</th>
<th>Daily cough</th>
<th>Daily sputum</th>
<th>BMI (kg/m²)</th>
<th>FEV1 (l)</th>
<th>FEV1 (% predicted)</th>
<th>Diastolic BP</th>
<th>Systolic BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quintile 1 (n = 960)</td>
<td>0.21 (0.17–0.39)</td>
<td>37 (15)</td>
<td>568 (58%)</td>
<td>292 (97%)</td>
<td>37 (18)</td>
<td>470 (49%)</td>
<td>296 (31%)</td>
<td>317 (33%)</td>
<td>273 (28%)</td>
<td>24.1 (3.6)</td>
<td>2.60 (0.63)</td>
<td>80 (9)</td>
<td>76 (9)</td>
</tr>
<tr>
<td>Quintile 2 (n = 961)</td>
<td>0.73 (0.62–0.86)</td>
<td>53 (7)</td>
<td>617 (64%)</td>
<td>936 (97%)</td>
<td>39 (18)</td>
<td>509 (53%)</td>
<td>275 (28%)</td>
<td>341 (35%)</td>
<td>287 (30%)</td>
<td>25.2 (3.6)</td>
<td>2.80 (0.64)</td>
<td>79 (9)</td>
<td>78 (9)</td>
</tr>
<tr>
<td>Quintile 3 (n = 961)</td>
<td>1.39 (1.21–1.61)</td>
<td>54 (7)</td>
<td>660 (69%)</td>
<td>933 (97%)</td>
<td>41 (18)</td>
<td>509 (53%)</td>
<td>269 (28%)</td>
<td>344 (36%)</td>
<td>306 (32%)</td>
<td>26.3 (3.5)</td>
<td>2.67 (0.63)</td>
<td>78 (9)</td>
<td>79 (9)</td>
</tr>
<tr>
<td>Quintile 4 (n = 961)</td>
<td>2.58 (2.17–3.06)</td>
<td>54 (7)</td>
<td>630 (66%)</td>
<td>925 (96%)</td>
<td>42 (20)</td>
<td>536 (56%)</td>
<td>267 (28%)</td>
<td>333 (35%)</td>
<td>287 (30%)</td>
<td>26.0 (4.0)</td>
<td>2.61 (0.59)</td>
<td>78 (9)</td>
<td>79 (9)</td>
</tr>
<tr>
<td>Quintile 5 (n = 960)</td>
<td>7.06 (4.79–9.02)</td>
<td>55 (6)</td>
<td>548 (57%)</td>
<td>897 (95%)</td>
<td>42 (19)</td>
<td>577 (60%)</td>
<td>244 (23%)</td>
<td>352 (37%)</td>
<td>313 (33%)</td>
<td>26.6 (4.2)</td>
<td>2.80 (0.63)</td>
<td>77 (9)</td>
<td>125 (16)</td>
</tr>
</tbody>
</table>

Table continued...

CRP, C-reactive protein; BMI, body mass index; FEV1, forced expiratory volume in 1 second; BP, blood pressure.
*Linear trend from quintile 1 to quintile 5.
†Geometric mean (interquartile range).
‡Post-bronchodilator values.
Continuous variables are presented as mean (SD) and dichotomous variables are presented as number of participants (% column totals) unless otherwise indicated.
Table 2 Clinical outcomes of participants in the Lung Health Study according to quintiles of baseline CRP levels

<table>
<thead>
<tr>
<th>CRP Quintile</th>
<th>Quintile 1 (n=960)</th>
<th>Quintile 2 (n=961)</th>
<th>Quintile 3 (n=961)</th>
<th>Quintile 4 (n=961)</th>
<th>Quintile 5 (n=960)</th>
<th>p for trend†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean CRP (mg/l)*</td>
<td>0.21 (0.04)</td>
<td>0.73 (0.04)</td>
<td>1.39 (0.04)</td>
<td>2.58 (0.04)</td>
<td>7.06 (0.04)</td>
<td><0.001</td>
</tr>
<tr>
<td>Total deaths</td>
<td>47 (4.9)</td>
<td>50 (5.2)</td>
<td>61 (6.4)</td>
<td>65 (6.8)</td>
<td>106 (11.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>CHD deaths</td>
<td>7 (0.7)</td>
<td>5 (0.5)</td>
<td>8 (0.9)</td>
<td>9 (0.9)</td>
<td>22 (2.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>CVD deaths</td>
<td>13 (1.4)</td>
<td>7 (0.7)</td>
<td>17 (1.8)</td>
<td>17 (1.8)</td>
<td>33 (3.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Fatal/non-fatal CHD</td>
<td>68 (7.1)</td>
<td>85 (8.8)</td>
<td>86 (9.0)</td>
<td>119 (12.4)</td>
<td>145 (15.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Fatal/non-fatal CVD</td>
<td>120 (12.5)</td>
<td>133 (13.8)</td>
<td>147 (15.3)</td>
<td>187 (19.5)</td>
<td>237 (24.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cancer deaths</td>
<td>21 (2.2)</td>
<td>32 (3.3)</td>
<td>29 (3.0)</td>
<td>37 (3.9)</td>
<td>50 (5.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>Lung cancer deaths</td>
<td>13 (1.4)</td>
<td>23 (2.4)</td>
<td>15 (1.6)</td>
<td>20 (2.1)</td>
<td>28 (2.9)</td>
<td>0.053</td>
</tr>
<tr>
<td>Respiratory deaths</td>
<td>8 (0.8)</td>
<td>3 (0.3)</td>
<td>6 (0.6)</td>
<td>3 (0.3)</td>
<td>6 (0.6)</td>
<td>0.578</td>
</tr>
</tbody>
</table>

CHD, coronary heart disease; CVD, cardiovascular disease.
*Geometric mean value for each quintile of CRP.
†Linear trend from quintile 1 to quintile 5.
Variables presented as number of participants (% column totals) unless otherwise indicated.

values were two tailed and those below 0.05 were considered to indicate statistical significance.

RESULTS

The mean (SD) age of the participants was 53 (7) years. Their FEV₁ was 2.75 (0.63) l (78 (9)% predicted), BMI was 25.6 (3.9) kg/m², and the mean smoking history was 40 (19) pack-years. Of the participants, 3023 (63%) were men, 4623 (96%) were white, 2601 (54%) were continued smokers, 1351 (28%) were intermittent quitters, and the rest were sustained quitters. The prevalence of cough or sputum production was similar between the groups. The risk of mortality was similar between the groups.

The clinical characteristics of the study participants divided into quintiles of CRP are summarised in table 1. Participants in the higher CRP quintiles were slightly older and heavier. Moreover, participants who had higher CRP levels were more likely to be continued or intermittent smokers than those with lower CRP levels. The prevalence of cough or sputum production was similar between the groups. The risk of mortality over the follow up period increased as a function of CRP quintile. Both cancer and cardiovascular causes of mortality increased along the CRP gradient (table 2).

Similarly, the risk of fatal and non-fatal coronary heart disease and cardiovascular diseases also increased along the CRP quintile gradient. However, the risk of respiratory deaths was similar between the groups.

After adjustment for potential confounders (see Methods section for details), the risk of all-cause mortality increased significantly as a function of serum CRP levels (table 3). Similarly, the risk of fatal and non-fatal coronary heart disease and cardiovascular diseases and cancer specific mortality increased along the CRP gradient. Respiratory causes of mortality, however, were not significantly related to serum CRP levels. To determine whether the relationship between CRP and all-cause mortality was threshold-dependent or continuous, we plotted a cubic spline curve. Figure 1 shows that the relationship between CRP and all-cause mortality is linear over the range of CRP that is prevalent in patients with mild to moderate COPD (0–6 mg/l).

Table 4 summarises the rate of decline in FEV₁ (percentage predicted) as a function of serum CRP levels. The highest quintile had the fastest decline, while the lowest quintile had the slowest decline in all smoking categories. This relationship was not materially modified by smoking status (p = 0.140).

For 1 year mortality, the C statistic for CRP (in quintiles) was 0.69 (95% CI 0.58 to 0.81). Quintiles of age had a C statistic of 0.70 (95% CI 0.57 to 0.82), while FEV₁ (in quintiles) had a C statistic of 0.65 (95% CI 0.53 to 0.77). In a multiple regression model (described in the Methods section), the risk of all-cause mortality was threshold-dependent or continuous, we plotted a cubic spline curve. Figure 1 shows that the relationship between all-cause mortality is linear over the range of CRP that is prevalent in patients with mild to moderate COPD (0–6 mg/l).

Table 4 summarises the rate of decline in FEV₁ (percentage predicted) as a function of serum CRP levels. The highest quintile had the fastest decline, while the lowest quintile had the slowest decline in all smoking categories. This relationship was not materially modified by smoking status (p = 0.140).

For 1 year mortality, the C statistic for CRP (in quintiles) was 0.69 (95% CI 0.58 to 0.81). Quintiles of age had a C statistic of 0.70 (95% CI 0.57 to 0.82), while FEV₁ (in quintiles) had a C statistic of 0.65 (95% CI 0.53 to 0.77). In a multiple regression model (described in the Methods section), the risk of all-cause mortality was threshold-dependent or continuous, we plotted a cubic spline curve. Figure 1 shows that the relationship between all-cause mortality is linear over the range of CRP that is prevalent in patients with mild to moderate COPD (0–6 mg/l).

Table 4 summarises the rate of decline in FEV₁ (percentage predicted) as a function of serum CRP levels. The highest quintile had the fastest decline, while the lowest quintile had the slowest decline in all smoking categories. This relationship was not materially modified by smoking status (p = 0.140).

For 1 year mortality, the C statistic for CRP (in quintiles) was 0.69 (95% CI 0.58 to 0.81). Quintiles of age had a C statistic of 0.70 (95% CI 0.57 to 0.82), while FEV₁ (in quintiles) had a C statistic of 0.65 (95% CI 0.53 to 0.77). In a multiple regression model (described in the Methods section), the risk of all-cause mortality was threshold-dependent or continuous, we plotted a cubic spline curve. Figure 1 shows that the relationship between all-cause mortality is linear over the range of CRP that is prevalent in patients with mild to moderate COPD (0–6 mg/l).

Table 4 summarises the rate of decline in FEV₁ (percentage predicted) as a function of serum CRP levels. The highest quintile had the fastest decline, while the lowest quintile had the slowest decline in all smoking categories. This relationship was not materially modified by smoking status (p = 0.140).

DISCUSSION

In this large prospective study of over 4800 individuals with mild to moderate COPD, serum CRP levels were found to be a significant predictor of all-cause mortality. The risk increased linearly along the CRP gradient, even after adjustments for...
Table 3 Adjusted risk of clinical outcomes in the Lung Health Study cohort according to quintiles of baseline CRP levels

<table>
<thead>
<tr>
<th>Quintile</th>
<th>Quintile 1</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5</th>
<th>p for trend†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean CRP (mg/l)*</td>
<td>0.21</td>
<td>0.73</td>
<td>1.39</td>
<td>2.58</td>
<td>7.06</td>
<td></td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>1.0</td>
<td>0.98 (0.65 to 1.46)</td>
<td>1.14 (0.78 to 1.68)</td>
<td>1.13 (0.77 to 1.65)</td>
<td>1.79 (1.25 to 2.56)</td>
<td><0.001</td>
</tr>
<tr>
<td>CHD deaths</td>
<td>1.0</td>
<td>0.66 (0.36 to 1.20)</td>
<td>0.91 (0.34 to 2.60)</td>
<td>0.87 (0.32 to 2.39)</td>
<td>2.20 (0.90 to 5.38)</td>
<td>0.16</td>
</tr>
<tr>
<td>CVD deaths</td>
<td>1.0</td>
<td>0.43 (0.17 to 1.09)</td>
<td>1.08 (0.52 to 2.34)</td>
<td>0.90 (0.43 to 1.89)</td>
<td>1.69 (0.86 to 3.33)</td>
<td>0.14</td>
</tr>
<tr>
<td>Fatal/non-fatal CHD</td>
<td>1.0</td>
<td>0.98 (0.71 to 1.35)</td>
<td>1.02 (0.74 to 1.40)</td>
<td>1.26 (0.93 to 1.71)</td>
<td>1.56 (1.15 to 2.10)</td>
<td><0.001</td>
</tr>
<tr>
<td>Fatal/non-fatal CVD</td>
<td>1.0</td>
<td>0.91 (0.71 to 1.17)</td>
<td>1.02 (0.80 to 1.31)</td>
<td>1.18 (0.93 to 1.49)</td>
<td>1.51 (1.20 to 1.90)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cancer deaths</td>
<td>1.0</td>
<td>1.39 (0.80 to 2.23)</td>
<td>1.20 (0.68 to 2.11)</td>
<td>1.43 (0.83 to 2.47)</td>
<td>1.85 (1.10 to 3.13)</td>
<td>0.027</td>
</tr>
<tr>
<td>Lung cancer deaths</td>
<td>1.0</td>
<td>1.66 (0.83 to 3.28)</td>
<td>1.00 (0.47 to 2.11)</td>
<td>1.31 (0.64 to 2.66)</td>
<td>1.76 (0.89 to 3.45)</td>
<td>0.243</td>
</tr>
<tr>
<td>Respiratory deaths</td>
<td>1.0</td>
<td>0.36 (0.09 to 1.36)</td>
<td>0.65 (0.22 to 1.90)</td>
<td>0.31 (0.08 to 1.20)</td>
<td>0.59 (0.20 to 1.78)</td>
<td>0.310</td>
</tr>
</tbody>
</table>

CRP, C-reactive protein; CHD, coronary heart disease; CVD, cardiovascular disease.
*Geometric mean value for each quintile of CRP.
†Linear trend from quintile 1 to quintile 5.
All values are mean (95% CI) and have been adjusted for sex, race, age (in quintiles), BMI, pack-years of smoking (in quintiles), biochemically validated smoking status (continued smokers, sustained quitters, or intermittent quitters), rate of decline in FEV1 (in quintiles), and predicted FEV1 (in quintiles).

Table 4 Annual change in FEV1 (% predicted) in the Lung Health Study cohort according to quintiles of CRP levels and smoking status

<table>
<thead>
<tr>
<th>Quintile</th>
<th>Quintile 1</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5</th>
<th>p for trend†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean CRP (mg/l)*</td>
<td>0.21</td>
<td>0.73</td>
<td>1.39</td>
<td>2.58</td>
<td>7.06</td>
<td></td>
</tr>
<tr>
<td>All participants</td>
<td>0.43 (1.69)</td>
<td>0.63 (1.50)</td>
<td>−0.58 (1.42)</td>
<td>−0.81 (1.53)</td>
<td>−0.93 (1.54)</td>
<td><0.001</td>
</tr>
<tr>
<td>Sustained smokers</td>
<td>1.00 (1.60)</td>
<td>1.07 (1.44)</td>
<td>−1.03 (1.57)</td>
<td>−1.30 (1.42)</td>
<td>−1.25 (1.52)</td>
<td>0.002</td>
</tr>
<tr>
<td>Intermittent smokers</td>
<td>0.10 (1.60)</td>
<td>0.30 (1.37)</td>
<td>−0.38 (1.48)</td>
<td>−0.50 (1.52)</td>
<td>−0.64 (1.44)</td>
<td><0.001</td>
</tr>
<tr>
<td>Sustained quitters</td>
<td>0.43 (1.57)</td>
<td>0.15 (1.41)</td>
<td>0.37 (1.47)</td>
<td>0.12 (1.37)</td>
<td>−0.15 (1.44)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

*Geometric mean value for each quintile of CRP.
†Linear trend from quintile 1 to quintile 5.
The interaction term for smoking status and CRP quintiles was not significant (p = 0.140).
Data are expressed as mean (SD) and are calculated from (FEV1 % predicted in year 1 – FEV1 % predicted in year 5)/5years.

potential confounders such as age, race, sex, cigarette smoking, and FEV1 (both FEV1 at baseline and the rate of decline in FEV1), indicating that serum CRP provides incremental prognostic information to these traditional markers of morbidity and mortality. Its discriminative power for all-cause mortality was greatest during the first year of measurement and decayed over time. Combined with age, race, and BMI, CRP levels produced a C statistic of 0.82 for 1-year mortality, suggesting the potential usefulness of serum CRP levels in estimating the prognosis of patients with COPD. In addition, serum CRP levels were significantly associated with cardiovascular events (both fatal and non-fatal) and with cancer specific causes of mortality.

The results of the current study have several implications. Firstly, the findings are consistent with the hypothesis that COPD is a multi-component disease and that systemic inflammation is associated with overall morbidity and mortality in these patients. Secondly, high sensitivity CRP assays are now widely available for commercial use so clinicians taking care of COPD patients can use CRP values, in addition to FEV1, to potentially identify patients at high risk of future morbidity and institute early intervention strategy to modify the risk. Thirdly, CRP data may be useful to clinicians to promote smoking cessation as COPD is largely caused by cigarette smoking. Public awareness of health problems related to cigarette smoking and public health campaigns for smoking cessation have made a significant impact in lowering smoking rates. Nevertheless, 20–25% of the adult population continue to smoke. Since active cigarette smoking increases CRP levels, the findings of this study can be used by health professionals to demonstrate to patients the importance of smoking cessation and in taking up healthy lifestyle choices (such as regular exercise and weight reduction) which together can reduce CRP levels.

CRP is a circulating pentraxin that is largely (but not exclusively) produced by hepatocytes as part of an acute phase response. Although CRP is clearly an excellent and stable biomarker for low grade systemic inflammation, there is no consensus on whether it plays a critical role in mediating chronic inflammatory disorders such as atherosclerosis. In vitro studies have shown that CRP can activate the classical complement cascade, upregulate adhesion molecules and chemotaxtactant chemokines, and induce the synthesis of inflammatory cytokines such as interleukin (IL)-8 and IL-6 which collectively can amplify the initial inflammatory signal and propagate chronic inflammatory disorders. Transgenic mouse models of CRP, however, have produced inconsistent results. Notwithstanding the ongoing controversy regarding the potential causal role of CRP, serum CRP levels correlate well with future risk of morbidity and mortality in the general population and in select patient populations such as those with underlying ischaemic heart disease or stroke.

There are several limitations to this study. Firstly, the LHS cohort comprised patients who had mild to moderate COPD. It is possible that these results may not apply to individuals without COPD or to those with more advanced disease. Although cardiovascular disease is the leading cause of hospitalisation and one of the leading causes of mortality in mild COPD, respiratory insufficiency and pneumonia become more important in severe COPD. Whether CRP has a similar discriminative value in patients with more advanced COPD is unknown. Secondly, CRP levels were measured only once in the LHS cohort so we could not evaluate the effect of changes...
in CRP on health outcomes in COPD patients. However, it is un
assuring that CRP levels measured at multiple time points
have been stable in many studies.26–28 Moreover, any random
fluctuations in CRP levels would have produced non-
differential misclassification, leading to a dilution of the
association between CRP and health outcomes. Consistent
with this notion, the highest discriminative power of CRP
was observed with 1 year mortality and its discriminative
power decayed with longer duration of follow up. These data
suggest that baseline CRP levels are best used to predict
prognosis over a short period of time. Thirdly, we did not
measure markers of systemic inflammation other than CRP.
We chose CRP because it is a stable molecule with a half
life of 18–24 hours, it is raised in COPD, it is easy to measure, and
because it has been shown to provide prognostic information
in the general population.29–31 The importance and usefulness
of other markers of systemic inflammation in COPD are
much more controversial. Moreover, their assays are not
widely available commercially, making them less useful for
clinical purposes. Fourthly, it is controversial whether CRP is
an effector molecule in the pathogenesis of cardiovascular
events or merely a marker of systemic inflammation. The
current study was not designed to address this issue. Future
work is needed to identify the potential pathogenic role of
CRP and other inflammatory mediators in COPD and the
conditions associated with COPD. Finally, although we
carefully minimised the number of covariates evaluated in
the analytical model to mitigate the risk of statistical
overfitting,30 we cannot fully discount this possibility.
Validation of the present findings using a separate COPD
sample was not possible because of the small size of the
study population.32,33 We have observed a gradient of CRP
levels in patients with mild to moderate COPD and provides
incremental information beyond that of smoking, FEV₁ and
other traditional risk factors in COPD. These data suggest
the analytical model to mitigate the risk of statistical
overfitting,30 we cannot fully discount this possibility.

CRP and mortality in COPD

REFERENCES

1. Pauwels RA, Buist AS, Calverley PM, et al. Global strategy for the diagnosis,
management, and prevention of chronic obstructive pulmonary disease.
NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD)
3. Andrensen H, Vestbo J. Chronic obstructive pulmonary disease as a systemic
obstructive pulmonary disease and systemic inflammation: a systematic review
5. Wouters EF. Chronic obstructive pulmonary disease – 5: Systemic effects
6. Sin DD, Man SF. Why are patients with chronic obstructive pulmonary disease
at increased risk of cardiovascular diseases? The potential role of systemic
significance of ventricular arrhythmia is related to pulmonary function: a study
and the use of an inhaled anticholinergic bronchodilator on the rate of decline
12. Cropp RO, Morris AH, Gardner RM. Reference spirometric values using
techniques and equipment that meet ATS recommendations. Am Rev Respir
cessation intervention on 14. 5-year mortality: a randomized clinical trial,
14. Anthonisen NR, Connnett JE, Murray RP. Smoking and lung function of Lung
15. Komar DW, Lemoshow S. Applied logistic regression, 2nd ed. New York,
17. Don WG, Man SF, Sin DD. The interactions between cigarette smoking and
changes on vascular inflammatory markers in obese women: a randomized
2003;111:1803–12.
21. Tuomisto K, Jousilahti P, Sundvall J, et al. C-reactive protein, interleukin-6 and
tumor necrosis factor alpha as predictors of incident coronary and
cardiovascular events and total mortality. A population-based, prospective
22. Tice JA, Brouwer W, Tracy RP, et al. The relation of C-reactive protein levels
term development of heart failure and mortality in survivors of acute
24. Kuo HK, Yen CJ, Chang CH, et al. Relation of C-reactive protein to stroke,
cognitive disorders, and depression in the general population: systematic
25. Celli BR, Cote CG, Marin JM, et al. The body-mass index, airflow obstruction,
of serial high-sensitive C-reactive protein measurements in healthy adults.
27. Macy EM, Hayes TE, Tracy RP. Variability in the measurement of C-reactive
protein in healthy subjects: implications for reference intervals and
28. Ridker PM, Cannon CP, Morrow D, et al. C-Reactive protein levels and
29. Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-Reactive
30. Selker HP. Systems for comparing actual and predicted mortality rates:
characteristics to promote cooperation in improving hospital care. Ann Intern
C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease
S F P Man, J E Connett, N R Anthonisen, R A Wise, D P Tashkin and D D Sin

Thorax 2006 61: 849-853 originally published online May 31, 2006
doi: 10.1136/thx.2006.059808

Updated information and services can be found at:
http://thorax.bmj.com/content/61/10/849

These include:

References
This article cites 26 articles, 8 of which you can access for free at:
http://thorax.bmj.com/content/61/10/849#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Epidemiologic studies (1829)
- Health effects of tobacco use (211)
- Screening (oncology) (407)
- Ischaemic heart disease (122)
- Airway biology (1100)
- Health education (1223)
- Lung function (773)
- Smoking (1037)
- Tobacco use (1039)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/