Role of EGFR mutations in the pathogenesis of lung adenocarcinomas

The epidermal growth factor receptor (EGFR) is found in 40–80% of non-small cell lung cancers (NSCLC). Somatic mutations of the tyrosine kinase domain of EGFR have been reported in patients with NSCLC who had clinical responses to treatment with tyrosine kinase inhibitors targeted against EGFR. However, little is known about the early pathogenesis of lung adenocarcinomas and whether EGFR mutations are involved in this process.

The authors obtained surgically resected tissue specimens from 20 patients with adenocarcinomas and one with adenosquamous carcinoma, all with EGFR gene mutations. Most patients were women and never or former smokers. They also obtained tissue specimens from 16 patients with adenocarcinomas without EGFR mutation as a control group. Microdissection was done to obtain multiple foci of normal epithelium within the tumour and from adjacent normal lung tissue. DNA was extracted from cells obtained from these foci and analysed for EGFR mutation (axons 19 and 21).

Nine of the 21 patients with mutant lung adenocarcinomas (43%) were found to have identical EGFR mutations in normal epithelium foci within the tumour. However, none of the 16 patients in the control group (without tumour EGFR mutations) had mutations in the normal respiratory epithelium. Interestingly, EGFR mutations in normal respiratory epithelium were more frequent within the tumour (43%) than in adjacent sites (24%).

The findings of EGFR mutations in histologically normal epithelium have not been reported before and provide a new insight into the possible mechanisms involved in initiation of peripheral airway tumours such as lung adenocarcinoma. This may provide a future target for detection or treatment.

M Ali
Specialist Registrar in Respiratory Medicine, Basildon University Hospital, Basildon, Essex, UK; masoodali@doctors.org.uk
Role of *EGFR* mutations in the pathogenesis of lung adenocarcinomas

M Ali

Thorax 2006 61: 16

Updated information and services can be found at: http://thorax.bmj.com/content/61/1/16

These include:

References

This article cites 1 articles, 1 of which you can access for free at: http://thorax.bmj.com/content/61/1/16#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Lung cancer (oncology) (670)
- Lung cancer (respiratory medicine) (670)
- Airway biology (1100)
- Molecular genetics (211)
- Tobacco use (1039)
- Lung neoplasms (608)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/