Anticholinergics in the treatment of children and adults with acute asthma: a systematic review with meta-analysis

G J Rodrigo, J A Castro-Rodriguez

See end of article for authors’ affiliations

Correspondence to: Dr G J Rodrigo Departamento de Emergencia, Hospital Central de los FFAA, Av 8 de octubre 3020, Montevideo 11600, Uruguay; gurod@adinet.com.uy

Receive 13 January 2005 Accepted 20 April 2005 Published Online First 17 June 2005

Background: Current guidelines recommend the use of a combination of inhaled β2 agonists and anticholinergics, particularly for patients with acute severe or life threatening asthma in the emergency setting. However, this statement is based on a relatively small number of randomised controlled trials and related systematic reviews. A review was undertaken to incorporate the more recent evidence available about the effectiveness of treatment with a combination of β2 agonists and anticholinergics compared with β2 agonists alone in the treatment of acute asthma.

Methods: A search was conducted of all randomised controlled trials published before April 2005. Results: Data from 32 randomised controlled trials (n = 3611 subjects) showed significant reductions in hospital admissions in both children (RR = 0.73; 95% CI 0.63 to 0.85, p = 0.0001) and adults (RR = 0.68; 95% CI 0.53 to 0.86, p = 0.002) treated with inhaled anticholinergic agents. Combined treatment also produced a significant increase in spirometric parameters 60–120 minutes after the last treatment in both children (SMD = −0.54; 95% CI −0.28 to −0.81, p = 0.0001) and adults (SMD = −0.36; 95% CI −0.23 to −0.49, p = 0.00001).

Conclusions: This review strongly suggests that the addition of multiple doses of inhaled ipratropium bromide to β2 agonists is indicated as the standard treatment in children, adolescents, and adults with moderate to severe exacerbations of asthma in the emergency setting.

T treatment of acute asthma includes inhaled short acting β2 agonists, systemic corticosteroids (CCS), and supplemental oxygen.1–4 In addition, current guidelines recommend the use of a combination of β2 agonists and anticholinergics, particularly for patients with acute severe or life threatening asthma.5–7 This statement is based on a relatively small number of randomised controlled trials and related systematic reviews.8–10 However, new studies have since been published.8 The aim of this systematic review was to update the evidence on the effectiveness of a combination of inhaled anticholinergics and β2 agonists compared with β2 agonists alone for the treatment of children, adolescents, and adults with acute asthma in the emergency department (ED).

METHODS

Search strategy and selection criteria

The search was conducted using five search strategies to identify potentially relevant trials. (1) MEDLINE (1966–April 2005), EMBASE (1974–April 2005) and CINAHL (1982–April 2005) databases were searched using the following MeSH, full text and keyword terms: emergency OR acute asthma OR status asthmaticus OR severe asthma OR wheeze. AND anticholinergics OR ipratropium OR oxitropium, OR glycopyrrolate. (2) An advanced search of the Cochrane Controlled Trials Register (first quarter 2005) was completed using the above search strategy to identify any additional trials. (3) References from included studies, reviews, and texts were searched for citations. (4) Hand searching of the top 20 respiratory journals was completed. (5) We made inquiries to Boehringer Ingelheim regarding other published or unpublished trials supported by the company. Trials published solely in abstract form were excluded.

Included studies met the following criteria: (1) Target population: children (18 months to 17 years) and adults (≥18 years) with acute exacerbations of asthma presenting to an ED or equivalent care setting. (2) Intervention: single or repeated doses of inhaled anticholinergic agents given in combination with inhaled β2 agonists compared with inhaled β2 agonists alone. Studies involving the use of atropine were excluded. (3) Design: randomised and placebo controlled trials without language restriction. (4) Primary outcomes: admission to hospital and spirometric testing (final absolute values or change from baseline 60–120 minutes after the last combined anticholinergic and β2 agonist inhalation). Because the peak bronchodilator effect after the administration of anticholinergics occurs within 1–2 hours, it is reasonable to expect significant improvement during this time. Secondary outcome measures were clinical score, duration of treatment in the ED, respiratory rate, oxygen saturation, heart rate, and side effects.

Data abstraction and validity assessment

Titles, abstracts, and citations were independently reviewed by two reviewers (GJR and JACR) to assess potential relevance for full review. From the full text, both reviewers independently assessed studies for inclusion based on the criteria for population, intervention, study design and outcomes. Data extraction included the following items: (1) Population: age, sex, number of patients studied, patient demographic data, withdrawals. (2) Intervention: agent, dose, route of delivery, and duration of treatment. (3) Control: concurrent treatments. (4) Outcomes. (5) Design: method of randomisation and allocation concealment. Any disagreement over study inclusion was resolved by consensus. The methodological quality of each trial was evaluated.

Abbreviations: CCS, corticosteroids; ED, emergency department; FEV1, forced expiratory volume in 1 second; NNT, number of patients needed to treat; PEF, peak expiratory flow; RR, relative risk; SMD, standardised mean difference; WMD, weighted mean difference
Table 1 Characteristics of trials in children included in the review

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Design</th>
<th>Country</th>
<th>Jadad score</th>
<th>No (and age of patients)</th>
<th>Mean baseline severity</th>
<th>Dose of f agonist</th>
<th>Dose of anticholinergic</th>
<th>CCS use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bech et al. (1985)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>25 (6-17 y)</td>
<td>FEV1<50%</td>
<td>S, 0.05 mg/kg q20 min</td>
<td>IIb, 0.25 mg Neb x1</td>
<td>No</td>
</tr>
<tr>
<td>Cook et al. (1985)</td>
<td>R, DB</td>
<td>E, Australia</td>
<td>4</td>
<td>30 (18 m-12 y)</td>
<td>NR</td>
<td>F, 0.125-0.5 ml</td>
<td>IIb, 1-2 ml Neb x1</td>
<td>No</td>
</tr>
<tr>
<td>Reisman et al. (1988)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>24 (5-15 y)</td>
<td>FEV1<55%</td>
<td>S, 0.05 mg q20 min</td>
<td>IIb, 0.25 mg Neb x3</td>
<td>No</td>
</tr>
<tr>
<td>Watson et al. (1988)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>31 (6-17 y)</td>
<td>FEV1 30-70%</td>
<td>F, 0.62 mg q60 min</td>
<td>IIb, 0.25 mg q60 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Plachyshyn et al. (1990)</td>
<td>R, DB</td>
<td>E, Thailand</td>
<td>1</td>
<td>20 (4-15 y)</td>
<td>NR</td>
<td>T, 0.5 mg MDI x1</td>
<td>IIb, 0.4 mg MDI x1</td>
<td>No</td>
</tr>
<tr>
<td>Peterson et al. (1994)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>5</td>
<td>163 (5-12 y)</td>
<td>FEV1<70%</td>
<td>S, 3 mg q45 min</td>
<td>IIb, 0.25 mg q45 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Schul et al. (1995)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>5</td>
<td>80 (5-17 y)</td>
<td>FEV1<50%</td>
<td>S, 0.15 mg/kg q20 min</td>
<td>IIb, 0.25 mg Neb x1 or 0.05 mg Neb x3</td>
<td>No</td>
</tr>
<tr>
<td>Qureshi et al. (1997)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>90 (6-18 y)</td>
<td>FEV1<50%</td>
<td>S, 0.15 mg/kg q30 min</td>
<td>IIb, 0.5 mg Neb x2</td>
<td>Yes</td>
</tr>
<tr>
<td>Calvo et al. (1998)</td>
<td>R, DB</td>
<td>Sp, Chile</td>
<td>3</td>
<td>80 (18-55 y)</td>
<td>PEF <80%</td>
<td>S, 0.2 mg q15 min</td>
<td>IIb, 0.4 mg q15 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Ducharme et al. (1998)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>5</td>
<td>298 (2-18 y)</td>
<td>Mild to moderate</td>
<td>S, 0.07 mg/kg q30 min</td>
<td>IIb, 0.25 mg Neb x1</td>
<td>Yes</td>
</tr>
<tr>
<td>Qureshi et al. (1998)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>434 (2-18 y)</td>
<td>Moderate to severe</td>
<td>S, 2.5-5 mg q20 min</td>
<td>IIb, 0.5 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Zorc et al. (1999)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>427 (1-17 y)</td>
<td>Moderate to severe</td>
<td>S, 2.5 mg q20</td>
<td>IIb, 0.5 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Benito Fernandez et al. (2000)</td>
<td>R, DB</td>
<td>Sp, Spain</td>
<td>5</td>
<td>102 (5 m-16 y)</td>
<td>Severe</td>
<td>S, 0.2 mg/kg q30 min</td>
<td>IIb, 0.25 mg q30 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Siem Moreno et al. (2002)</td>
<td>R, DB</td>
<td>Sp, Mexico</td>
<td>2</td>
<td>30 (8-15 y)</td>
<td>Moderate to severe</td>
<td>S, 0.2 mg q10 min</td>
<td>IIb, 0.02 mg q10 min</td>
<td>No</td>
</tr>
<tr>
<td>Timot et al. (2002)</td>
<td>R, DB</td>
<td>F, France</td>
<td>3</td>
<td>114 (2-15 y)</td>
<td>Moderate</td>
<td>S, 0.15 mg/kg q20 min</td>
<td>IIb, 0.25 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Sharma et al. (2004)</td>
<td>R, DB</td>
<td>E, India</td>
<td>2</td>
<td>50 (6-14 y)</td>
<td>Moderate to severe</td>
<td>S, 0.15 mg/kg q20 min</td>
<td>IIb, 0.25 mg q20 min</td>
<td>No</td>
</tr>
</tbody>
</table>

R, randomised; DB, double blind; E, English; Sp, Spanish; F, French; FEV1, forced expiratory volume in 1 second; PEF, peak expiratory flow; NR, not reported; S, salbutamol; F, fenoterol; T, terbutaline; IB, ipratropium bromide; CCS, systemic corticosteroids.

Results

A total of 88 studies were examined in full text for possible inclusion, 56 of which were excluded for the following reasons: non-randomised trials (n = 4), non-acute asthma (n = 14), anticholinergics alone were studied (n = 6), hospitalised patients (n = 8), use of atropine (n = 5), chronic asthma (n = 18), and use of intravenous route (n = 1). A total of 32 randomised controlled trials (16 including children and adolescents17-22 and 16 including adults23-28) were therefore selected for further analysis (tables 1 and 2). Five studies were supported by Boehringer Ingelheim.18-20 Data for 3611 subjects (1564 children and adolescents, 2047 adults) were available for meta-analysis. There was a total agreement between the two independent reviewers on inclusion of studies and Jadad study quality grading. The anticholinergic agent used was ipratropium bromide in 29 studies,21-24 26-28 30-32 34-36 40-42 oxitropium bromide in two studies,33 35 and glycopyrrolate in one study.17 Trials were grouped according to the intensity of the anticholinergic treatment: those testing the addition of a β2 agonist inhalations were named single dose protocols, and those testing more than one dose were grouped as multiple dose protocols. Thirteen studies (five in children17,18 21-23 26-28 30-32 and eight in adults21-23 26-28 30-32) tested a single dose protocol and the remaining 19 trials used more than one dose of anticholinergic. Of these, 18 studies tested multiple doses in a predetermined fixed regimen (multiple dose fixed protocol) and one study tested the addition of anticholinergics to every β2 agonist inhalations, leaving the number of inhalations determined by the patient’s needs (multiple dose flexible protocol).20 One trial tested the first two protocols.34 Asthma severity was defined at baseline by spirometric testing (forced expiratory volume in 1 second (FEV1) or peak expiratory flow (PEF) 70-50% of predicted = moderate exacerbation, and PEF <50% of predicted = severe exacerbation) or different clinical scores. Most enrolled patients with acute asthma had moderate to severe exacerbations, but several studies reported data stratified on asthma severity.22-24 26-28 30-32 43 44 The most frequently reported outcomes were hospital admission (20 studies) and spirometry (26 studies); respiratory resistance measured by forced oscillation was used...
in one trial.16 One study did not provide spirometric data or admission rates.17 Clinical scores were used in only a few studies and the reporting of adverse effects was variable.

Hospital admissions
Ten studies accumulating 1786 children and adolescents reported hospital admissions.18–27 One study tested two protocols (single and multiple fixed dose) and three trials reported data stratified by asthma severity (moderate and severe patients).22–24 At the end of treatment patients who received inhaled β₂ agonists and anticholinergics had a significantly lower admission rate (fig 1). The NNT was 13 (95% CI 9 to 28), indicating that 13 children needed to be treated with β₂ agonists and anticholinergics to prevent one admission. There was no evidence of systematic bias identified by the measure of funnel plot asymmetry. Also, no significant heterogeneity was demonstrated, which accepts the null hypothesis of similar treatment effects. Stratification on the basis of baseline severity (moderate vs severe) and the intensity of the anticholinergic protocol

Table 2 Characteristics of trials in children included in the review

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Design</th>
<th>Language and country</th>
<th>Jodok score</th>
<th>No (and age) of patients</th>
<th>Mean baseline severity</th>
<th>Dose of β agonist</th>
<th>Dose of anticholinergic</th>
<th>CCS use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryant (1985)</td>
<td>R, DB</td>
<td>E, Australia</td>
<td>2</td>
<td>28 (>18 y)</td>
<td>FEV₁ <75%</td>
<td>F, 1 mg Neb x1</td>
<td>B, 0.5 mg Neb x1</td>
<td>No</td>
</tr>
<tr>
<td>Rebuck et al (1987)</td>
<td>MC, DB</td>
<td>E, Canada</td>
<td>4</td>
<td>148 (>18 y)</td>
<td>FEV₁ <75%</td>
<td>F, 1.25 mg Neb x1</td>
<td>B, 0.5 mg Neb x1</td>
<td>Yes</td>
</tr>
<tr>
<td>Higgins et al (1991)</td>
<td>R, DB</td>
<td>E, England</td>
<td>2</td>
<td>40 (>18 y)</td>
<td>PEF <30%</td>
<td>S, 5 mg q20 min</td>
<td>B, 0.5 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>O’Driscoll et al (1991)</td>
<td>R, DB</td>
<td>E, England</td>
<td>2</td>
<td>56 (>18 y)</td>
<td>PEF <35%</td>
<td>S, 10 mg q20 min</td>
<td>B, 0.5 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Summers and Tarola</td>
<td>R, DB</td>
<td>E, Australia</td>
<td>3</td>
<td>76 (16–70 y)</td>
<td>PEF <60%</td>
<td>S, 5 mg Neb x1</td>
<td>B, 0.5 mg Neb x1</td>
<td>Yes</td>
</tr>
<tr>
<td>Curdulla and Emerman (1994)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>3</td>
<td>125 (>18 y)</td>
<td>FEV₁ <75%</td>
<td>S, 2.5 mg q45 min</td>
<td>Neb +2</td>
<td>No</td>
</tr>
<tr>
<td>Rodrigo and Rodrigo (1995)</td>
<td>R, DB</td>
<td>Sp, Uruguay</td>
<td>3</td>
<td>22 (18–50 y)</td>
<td>FEV₁ <50%</td>
<td>S, 0.4 mg q10 min</td>
<td>MDI +3</td>
<td>No</td>
</tr>
<tr>
<td>Karpel et al (1996)</td>
<td>MC, R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>384 (18–55 y)</td>
<td>FEV₁ <60%</td>
<td>S, 2.5 mg q45 min</td>
<td>MDI +2</td>
<td>No</td>
</tr>
<tr>
<td>FitzGerald et al (1997)</td>
<td>MC, R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>342 (18–50 y)</td>
<td>FEV₁ <70%</td>
<td>S, 3 mg Neb x1</td>
<td>B, 0.5 mg Neb x1</td>
<td>Yes</td>
</tr>
<tr>
<td>Garret et al (1997)</td>
<td>TC, R, DB</td>
<td>E, New Zealand</td>
<td>4</td>
<td>338 (18–55 y)</td>
<td>FEV₁ <70%</td>
<td>S, 2.5 mg q45 min</td>
<td>N eb +2</td>
<td>Yes</td>
</tr>
<tr>
<td>Lin et al (1998)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>4</td>
<td>55 (>18 y)</td>
<td>PEF <200 l/min</td>
<td>S, 2.5 mg q20 min</td>
<td>Neb +3</td>
<td>No</td>
</tr>
<tr>
<td>Kanie et al (1999)</td>
<td>MC, R</td>
<td>E, Japan</td>
<td>5</td>
<td>64 (>18 y)</td>
<td>FEV₁ <70%</td>
<td>F, 0.2 mg q1 min</td>
<td>MDI +2</td>
<td>No</td>
</tr>
<tr>
<td>Weber et al. (1999)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>67 (>18 y)</td>
<td>FEV₁ <70%</td>
<td>S, 1.0 mg q1 h</td>
<td>Neb +3</td>
<td>No</td>
</tr>
<tr>
<td>Nakano et al. (2000)</td>
<td>R, SB</td>
<td>E, Japan</td>
<td>4</td>
<td>74 (>18 y)</td>
<td>PEF <50%</td>
<td>S, 0.4 mg q20 min</td>
<td>MDI +3</td>
<td>No</td>
</tr>
<tr>
<td>Rodrigo and Rodrigo (2000)</td>
<td>R, DB</td>
<td>E, Uruguay</td>
<td>5</td>
<td>180 (18–50 y)</td>
<td>FEV₁ <50%</td>
<td>S, 0.4 mg q20 min</td>
<td>MDI +3</td>
<td>No</td>
</tr>
<tr>
<td>Aggarwal et al (2002)</td>
<td>R</td>
<td>E, India</td>
<td>2</td>
<td>48 (13–50 y)</td>
<td>PEF <50%</td>
<td>S, 5 mg q60 min</td>
<td>Neb +2</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 1 Pooled relative risk for hospital admission (with 95% confidence interval) of eligible studies in children comparing the addition of anticholinergic agents to β₂ agonists (treatment) with β₂ agonists alone (control). Trials stratified according to intensity of anticholinergic treatment (single or multiple fixed dose protocols) and asthma severity (moderate or severe patients).
(single vs multiple fixed dose protocol) suggested a trend towards a reduced risk of admission in children with the most severe asthma attack and treated with multiple doses of anticholinergics. The NNT to prevent one admission among severe patients was 7 (95% CI 4 to 16). The hospital admission rate did not change when we excluded studies without explicit admission criteria (RR = 0.73; 95% CI 0.62 to 0.85, I² = 0%). The use of systemic CCS did not modify this outcome (RR = 0.69; 95% CI 0.58 to 0.81).

Nine trials totalling 1586 adults with acute asthma reported hospital admissions.13–14 16–18 20 23 26 27 One trial reported data stratified on asthma severity (moderate and severe patients).22 There was a significant reduction in the hospital admission rate favouring anticholinergic use (fig 2). The NNT was 14 (95% CI 9 to 30). There was no evidence of systematic bias identified by the measure of funnel plot asymmetry. Again, no significant heterogeneity was demonstrated. Stratification on the basis of baseline severity (moderate vs severe) and the intensity of the anticholinergic protocol (single vs multiple fixed dose) suggested a trend towards a reduced risk of admission in adults with the most severe asthma attack and treated with multiple doses of anticholinergics (fig 2). Intensity of anticholinergic treatment greatly influenced the reduction in hospital admission; a greater reduction was seen in trials using three or more doses of anticholinergic agents (RR = 0.53; 95% CI 0.36 to 0.76, p = 0.0006; NNT = 6; 95% CI 4 to 13). These results did not change when only studies with explicit admission criteria were pooled (RR = 0.58; 95% CI 0.38 to 0.87, I² = 28%) or when systemic CCS were used (RR = 0.74; 95% CI 0.48 to 1.14).

Spirometric testing

Nine studies examined the response to treatment in children and adolescents with acute asthma using spirometry.12 14–18 19 23 26 27 Five trials reported the percentage change in FEV₁22 24 26 28 29 three reported the percentage change in PEFR,9 10 14 one reported the change in percentage predicted FEV₁,12 14–16 25 three reported the percentage change in respiratory resistance.21 One trial tested two protocols (single and multiple fixed dose) and one study presented data stratified by severity of obstruction (moderate and severe).21 Data were recorded 60-120 minutes after the last combined treatment. When all the studies were pooled a significant improvement in spirometric parameters favoured the combination treatment (SMD = -0.54; 95% CI -0.28 to -0.81, p = 0.0001). However, there was significant heterogeneity (χ² = 23.41, df = 10, I² = 57.3%, p = 0.009). When we pooled the seven studies that reported FEV₁ data (change in percentage predict or percentage change)29 10 18 20 22 27 stratified by the intensity of anticholinergic treatment (one or two doses vs more than two doses), homogeneity was achieved (fig 3). The use of more than two doses of anticholinergics showed more benefit than lower doses. There was no evidence of systematic bias. Patients treated with one or two doses of anticholinergic agents had a mean difference of change in FEV₁ of 12.4% (95% CI 5.4 to 19.4) compared with those who did not receive anticholinergics, while those who received more than two doses had a mean difference of 16.3% (95% CI 8.2 to 24.5).

Spirometric data were reported by 16 studies in adult subjects.22 23 Two trials showed data stratified by severity of obstruction (moderate and severity).22 23 Eight trials reported FEV₁ (I),14 17 18 20 21 22 29 30 31 one reported PEFR (%),14 and one reported FEV₁ (% predicted).14 Combined treatment produced a significantly greater increase in spirometric parameters than β₂ agonists alone (SMD = -0.36; 95% CI -0.23 to -0.49, p = 0.00001). There was a significant heterogeneity between trials (χ² = 25.5, df = 15, I² = 41.3%, p = 0.04). Homogeneity was achieved when studies that reported PEFR (%) were stratified by intensity of anticholinergic treatment (fig 4).22 23 24 27 30–32 Again, the use of more than two doses of anticholinergics produced a greater benefit than one or two doses and there was no evidence of systematic bias. As previously observed for PEFR, patients treated with more than two doses of anticholinergics had a significant difference in FEV₁ of 0.44 l (95% CI 0.25 to 0.63) while those treated with one or two doses had a difference of only 0.15 l (95% CI 0.05 to 0.24).

Other outcomes

Three paediatric studies21 22 24 reported a significant reduction in the clinical score after combined treatment (SMD = -0.29;
DISCUSSION

This systematic review constitutes an effort to incorporate the best evidence available up to April 2005 on the role of inhaled anticholinergic agents added to β2 agonists in children, adolescents, and adults with acute asthma in the ED setting. New data were found which we added to previous review.11 Thus, 10 new randomised trials (four in children12–17 and six in adults18–23) with a total of 809 patients have been added, representing an increase of 22% on the previous sample. Unlike the previous reviews, this study has enabled analysis of the effect of cumulative doses, particularly in adult studies. Several important conclusions can be made. Overall, our analysis confirmed that early administration of inhaled anticholinergic agents with β2 agonists lead to a reduction in admission rates of both children and adults of 30%. Baseline severity and the intensity of the anticholinergic protocol clearly influenced the magnitude of the benefit. Thus, anticholinergic agents are particularly beneficial in patients with moderate to severe obstruction (FEV1 <70% of predicted) treated with multiple dose fixed protocols consisting of three or more doses of an anticholinergic. These patients had a reduction in the hospital admission rate of 30–45% and only 6–14 subjects need to be treated to prevent one hospital admission. This is a very relevant finding since hospital admissions count for the largest part of direct health costs for asthma in most countries, and children or adults with more severe asthma attacks are more prone to be admitted to hospital. However, this review did not identify any beneficial effects of anticholinergic agents in patients with mild acute asthma. The fact that the use of systemic CCS

Figure 3 Pooled standardised mean difference (with 95% confidence interval) in forced expiratory volume in the first second (change in percentage predicted or percentage change) of children studies comparing the addition of anticholinergic agents to β2 agonists (treatment) with β2 agonists alone (control). Trials stratified according to the intensity of anticholinergic treatment (one or two doses v more than two doses).

Figure 4 Pooled weighted mean difference (with 95% confidence interval) in peak expiratory flow (l/min) of studies in adults comparing the addition of anticholinergics to β2 agonists (treatment) with β2 agonists alone (control). Trials stratified by intensity of anticholinergic treatment (one or two doses v more than two doses).
Anticholinergics in acute asthma

has not shown a significant effect in agreement with the evidence that they require 6–12 hours to modify outcomes such as changes in pulmonary function parameters.14 The short duration of the study period in all trials made it unlikely that these drugs would have a significant contribution.

Significant differences favouring the combination treatment were observed on spirometric data in both children and adults. Again, there was a dose-response relationship, with a greater benefit being achieved in patients treated with more than two doses of anticholinergic agents in combination with a β2 agonist. In adults, treatment with more than two doses produced clinically significant improvements in both FEV1 (0.44 L) and PEFR (50.5 L/min).15

In our meta-analysis we also looked at secondary outcomes and side effects but these were difficult to analyse because there was insufficient information to be pooled. A few of the studies in children reported a significant reduction in different clinical scores after combined treatment. There was no apparent increase in the occurrence of side effects such as tremor or heart rate among subjects treated with single or multiple dose protocols.

Strengths and limitations of the study

This study met most of the methodological criteria suggested for scientific reviews.14 Similar to all systematic reviews, this meta-analysis is limited by the quality and quantity of existing research and how data are reported. A comprehensive search of the published literature for potentially relevant studies was conducted using a systematic strategy to avoid bias. All of the 32 trials were randomised, and 26 were double blind. Exclusion of trials with lower methodological quality did not affect the conclusions. Assessment of the consistency of effects across studies is an essential part of the review to determine the generalisability of the findings; low values of heterogeneity (<15%) were obtained in all group and subgroup comparisons. The generalisability of study results to different countries should also be considered, particularly with regards to the hospital admission criteria. The decision to admit patients is based on many factors including past asthma and current exacerbation histories and spirometric test results, as well as clinical factors. Important variations in admission criteria could therefore influence the results. However, the results did not change when we analysed only studies with explicit criteria for admission to hospital.

Authors’ affiliations

2 National Institutes of Health. Global strategy for asthma management and prevention, NH Publication 02-3659, 2004

5 Studley RG, Aaron SD, Dales RE. The role of ipratropium bromide in the emergency management of acute asthma exacerbation: a meta-analysis of randomized clinical trials. Ann Emerg Med 1999;34:8–18

6 Plotnick LH, Ducharme FM. Combined inhaled anticholinergics and β2-agonists for initial treatment of acute asthma in children. Cochrane Database of Systematic Reviews 2000, Issue 3, CD000060

20 Ducharme FM, Davis GM. Randomized controlled trial of ipratropium bromide and frequent low doses of salbutamol in the treatment of mild and moderate acute asthma. J Pediatr 1998;133:479–85

26 Sharma A, Madan A. Nebulized salbutamol vs salbutamol and ipratropium combination in asthma. Indian J Pediatr 2004;71:121–4

33 Rodríguez G, Rodríguez C. Tratamiento de la crisis asmática con altas dosis de salbutamol y bromuro de ipratropio administrados mediante inhalador de dosis medida e inhaladora. Pac Crítica 1995;8:175–84

35 FitzGerald JM, Grunfeld A, Pare PO, et al. The clinical efficacy of combination nebulized anticholinergic and adrenergic bronchodilators vs. nebulized terbutaline alone in acute asthma. Chest 1997;111:311–5

www.thoraxjnl.com

LUNG ALERT

Nitric oxide protects against airway hyperresponsiveness

Nitric oxide (NO) is a highly active endogenous bronchodilator and, although increased levels are found in asthmatic lungs, the link between NO and asthma has remained elusive. NO is short lived in vivo but it reacts with cysteine sulphurs (thiols) in proteins to form more stable S-nitrosothiols (SNOs) which act as a source of bioactive NO. S-nitrosoglutathione (GSNO) is the most abundant SNO found in the airways where its levels are governed by the enzyme GSNO reductase (GSNOR). However, GSNO is depleted in asthmatic airways, suggesting a protective role.

In this study the authors showed that GSNOR levels were raised in the lungs of mice exposed to the allergen ovalbumin (OVA), probably due to lysis of airway epithelial cells and leucocytes. SNO levels were depleted. GSNOR gene knockout mice exposed to OVA had raised levels of SNOs in the airway, reduced basal airway tone, and no response to methacholine. Levels of type II inducible NO synthase were similar to wild type mice, as was the inflammatory response measured by bronchoalveolar fluid cell counts and IL-13, serum total IgE, and mucus metaplasia. Tracheal rings from wild type mice became desensitised to repeated β adrenergic stimulation, whereas GSNOR knockout mice did not and so retained the capacity to relax.

This is the first study to show a definitive link between NO and airway hyperresponsiveness (AHR). NO, when present as SNOs, protects against AHR through modulation of β adrenoreceptor function. SNO levels are regulated by GSNOR which is raised in asthmatic airways, and the resulting lack of SNOs promotes AHR.

P Kewin
Wellcome Clinical Research Fellow, Department of Respiratory Medicine, Gartnavel General Hospital, Glasgow, UK, pk49y@clinmed.gla.ac.uk
Nitric oxide protects against airway hyperresponsiveness

P Kewin

Thorax 2005 60: 746
doi: 10.1136/thx.2005.la0168

Updated information and services can be found at:
http://thorax.bmj.com/content/60/9/746

These include:

References

This article cites 1 articles, 1 of which you can access for free at:
http://thorax.bmj.com/content/60/9/746#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Asthma (1782)
- Inflammation (1020)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/