Anticholinergics in the treatment of children and adults with acute asthma: a systematic review with meta-analysis

G J Rodrigo, J A Castro-Rodriguez

Background: Current guidelines recommend the use of a combination of inhaled β2 agonists and anticholinergics, particularly for patients with acute severe or life threatening asthma in the emergency setting. However, this statement is based on a relatively small number of randomised controlled trials and related systematic reviews. A review was undertaken to incorporate the more recent evidence available about the effectiveness of treatment with a combination of β2 agonists and anticholinergics compared with β2 agonists alone in the treatment of acute asthma.

Methods: A search was conducted of all randomised controlled trials published before April 2005. Results: Data from 32 randomised controlled trials (n = 3611 subjects) showed significant reduction in hospital admissions in both children (RR = 0.73; 95% CI 0.63 to 0.85, p = 0.0001) and adults (RR = 0.68; 95% CI 0.53 to 0.86, p = 0.002) treated with inhaled anticholinergic agents. Combined treatment also produced a significant increase in spirometric parameters 60–120 minutes after the last treatment in both children (SMD = −0.54; 95% CI −0.28 to −0.81, p = 0.0001) and adults (SMD = −0.36; 95% CI −0.23 to −0.49, p = 0.00001).

Conclusions: This review strongly suggests that the addition of multiple doses of inhaled ipratropium bromide to β2 agonists is indicated as the standard treatment in children, adolescents, and adults with moderate to severe exacerbations of asthma in the emergency setting.
Anticholinergics in acute asthma

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Design</th>
<th>Language and country</th>
<th>Jadad score</th>
<th>No (and age of patients)</th>
<th>Mean baseline severity</th>
<th>Dose of β agonist</th>
<th>Dose of anticholinergic</th>
<th>CCS use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook et al. (1985)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>25 (6–17 y)</td>
<td>FEV1 <50%</td>
<td>S, 0.05 mg/kg q20 min</td>
<td>Neb: x6</td>
<td>IB, 0.25 mg Neb: x1</td>
</tr>
<tr>
<td>Reisman et al. (1988)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>24 (5–15 y)</td>
<td>FEV1 <55%</td>
<td>S, 0.05 mg q20 min</td>
<td>Neb: x6</td>
<td>IB, 0.25 mg Neb: x3</td>
</tr>
<tr>
<td>Watson et al. (1988)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>31 (6–17 y)</td>
<td>FEV1: 30–70%</td>
<td>F, 0.62 mg q60 min</td>
<td>Neb: x2</td>
<td>IB, 0.25 mg q60 min</td>
</tr>
<tr>
<td>Pham et al. (1990)</td>
<td>R, DB</td>
<td>E, Thailand</td>
<td>1</td>
<td>20 (4–15 y)</td>
<td>NR</td>
<td>T, 0.5 mg MDI</td>
<td>x1</td>
<td>IB, 0.04 MDI</td>
</tr>
<tr>
<td>Fekkes et al. (1991)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>5</td>
<td>163 (5–12 y)</td>
<td>FEV1 <70%</td>
<td>S, 3 mg q45 min</td>
<td>Neb: x2</td>
<td>IB, 0.25 mg q45 min</td>
</tr>
<tr>
<td>Paterson et al. (1994)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>5</td>
<td>80 (5–17 y)</td>
<td>FEV1 <50%</td>
<td>S, 0.15 mg/kg q20 min</td>
<td>Neb: x3</td>
<td>IB, 0.25 mg Neb: x1 or 0.05 mg Neb: x3</td>
</tr>
<tr>
<td>Qureshi et al. (1997)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>90 (6–18 y)</td>
<td>FEV1 <50%</td>
<td>S, 0.15 mg/kg q30 min</td>
<td>Neb: x3</td>
<td>IB, 0.5 mg Neb: x2</td>
</tr>
<tr>
<td>Calvo et al. (1998)</td>
<td>R, DB</td>
<td>Sp, Chile</td>
<td>3</td>
<td>80 (18–55 y)</td>
<td>PEF <80%</td>
<td>S, 0.2 mg q15 min</td>
<td>MDI: x4</td>
<td>IB, 0.04 mg q15 min</td>
</tr>
<tr>
<td>Ducharme et al. (1998)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>5</td>
<td>298 (2–18 y)</td>
<td>Mild to moderate</td>
<td>Moderate to severe</td>
<td>S, 2.5–5 mg q20 min</td>
<td>Neb: x3</td>
</tr>
<tr>
<td>Zanc et al. (1999)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>427 (1–17 y)</td>
<td>Moderate to severe</td>
<td>Severe</td>
<td>S, 2.5 mg q20</td>
<td>Neb: x3</td>
</tr>
<tr>
<td>Benito Fernández et al. (2000)</td>
<td>R, RB</td>
<td>Sp, Spain</td>
<td>5</td>
<td>102 (5–16 y)</td>
<td>Moderate to severe</td>
<td>Severe</td>
<td>S, 0.2 mg/kg q20 min</td>
<td>Neb: x2</td>
</tr>
<tr>
<td>Simó et al. (2001)</td>
<td>R, DB</td>
<td>Spain, Mexico</td>
<td>2</td>
<td>30 (8–15 y)</td>
<td>Moderate to severe</td>
<td>Severe</td>
<td>S, 0.2 mg/kg q30 min</td>
<td>Neb: x3</td>
</tr>
<tr>
<td>Timol et al. (2002)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>114 (2–15 y)</td>
<td>Moderate to severe</td>
<td>Severe</td>
<td>S, 0.15 mg/kg q20 min</td>
<td>Neb: x6</td>
</tr>
<tr>
<td>Sharma et al. (2004)</td>
<td>R, DB</td>
<td>E, India</td>
<td>2</td>
<td>50 (6–14 y)</td>
<td>Moderate to severe</td>
<td>Severe</td>
<td>S, 0.15 mg/kg q20 min</td>
<td>Neb: x3</td>
</tr>
</tbody>
</table>

R, randomised; SB, single blind; DB, double blind; E, English; Sp, Spanish; F, French; FEV1, forced expiratory volume in 1 second; PEF, peak expiratory flow; NR, not reported; S, salbutamol; F, fenoterol; T, terbutaline; B, ipratropium bromide; CCS, systemic corticosteroids.

RESULTS

A total of 88 studies were examined in full text for possible inclusion, 56 of which were excluded for the following reasons: non-randomised trials (n = 4), non-acute asthma (n = 14), anticholinergics alone were studied (n = 6), hospitalised patients (n = 8), use of atropine (n = 5), chronic asthma (n = 18), and use of intravenous route (n = 1). A total of 32 randomised controlled trials (16 including children and adolescents12–27 and 16 including adults28–43) were therefore selected for further analysis (tables 1 and 2). Five studies were supported by Boehringer Ingelheim.17–18 35–37 Data for 3611 subjects (1564 children and adolescents, 2047 adults) were available for meta-analysis. There was a total agreement between the two independent reviewers on inclusion of studies and Jadad study quality grading. The anticholinergic agent used was ipratropium bromide in 29 studies,12–32 34–38 40 42 43 oxitropium bromide in two studies,39 41 and glycopyrrolate in one study.33 Trials were grouped according to the intensity of the anticholinergic treatment: those testing the addition of anticholinergics to every needs (multiple dose flexible protocol).20 One trial tested the addition of anticholinergics to every hospital admission (20 studies) and spirometry (26 studies); respiratory resistance measured by forced oscillation was used.

using the 5-point scale (0 = worst and 5 = best) described by Jadad et al.13 This instrument assesses the adequacy of randomisation, blinding, and the handling of withdrawals and drop outs.

Data analysis

The data were combined in the meta-analysis by means of random effects models.5 Binary outcomes were pooled using common relative risk (RR) and 95% confidence intervals (CI). The number of patients needed to treat (NNT) to prevent the adverse outcome of interest was calculated. For continuous outcomes the weighted mean difference (WMD) (for variables using the same unit of measure) or the standardised mean differences (SMD) (reported in SD units where different units were used) and 95% CI were calculated. We tested for heterogeneity using the DerSimonian and Laird Q statistic and also measured heterogeneity with the I 2 test.10 Data for 3611 subjects (1564 children and adolescents, 2047 adults) were available for meta-analysis. There was a total agreement between the two independent reviewers on inclusion of studies and Jadad study quality grading. The anticholinergic agent used was ipratropium bromide in 29 studies,12–32 34–38 40 42 43 oxitropium bromide in two studies,39 41 and glycopyrrolate in one study.33 Trials were grouped according to the intensity of the anticholinergic treatment: those testing the addition of a single dose of an anticholinergic agent to β2 agonist inhalations were named single dose protocols, and those testing more than one dose were grouped as multiple dose protocols. Thirteen studies (five in children11 13 16 18 21 and eight in adults28–43) were therefore grouped as multiple dose protocols. Thirteen studies (five in children11 13 16 18 21 and eight in adults28–43) were therefore tested a single dose protocol and the remaining 19 trials tested more than one dose were grouped as multiple dose protocols. Thirteen studies (five in children11 13 16 18 21 and eight in adults28–43) were therefore tested a single dose protocol and the remaining 19 trials tested more than one dose were grouped as multiple dose protocols.

patients with acute asthma had moderate to severe exacerbations, but several studies reported data stratified on asthma severity.22–24 27 31–33 36 38 42 The most frequently reported outcomes were hospital admission (20 studies) and spirometry (26 studies); respiratory resistance measured by forced oscillation was used.

www.thoraxjnl.com
in one trial. Clinical scores were used in only a few studies and the reporting of adverse effects was variable.

Hospital admissions

Ten studies accumulating 1786 children and adolescents reported hospital admissions. One study tested two protocols (single and multiple fixed dose) and three trials reported data stratified by asthma severity (moderate and severe patients). At the end of treatment patients who received inhaled β₂ agonists and anticholinergics had a significantly lower admission rate (fig 1). The NNT was 13 (95% CI 9 to 28), indicating that 13 children needed to be treated with β₂ agonists and anticholinergics to prevent one admission. There was no evidence of systematic bias identified by the measure of funnel plot asymmetry. Also, no significant heterogeneity was demonstrated, which accepts the null hypothesis of similar treatment effects. Stratification on the basis of baseline severity (moderate vs severe) and the intensity of the anticholinergic protocol

Table 2 Characteristics of trials included in the review

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Language and country</th>
<th>Jadad score</th>
<th>No (and age) of patients</th>
<th>Mean baseline severity (moderate vs severe)</th>
<th>Dose of β agonist</th>
<th>Dose of anticholinergic</th>
<th>CCS use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryant (1985)</td>
<td>R, DB</td>
<td>E, Australia</td>
<td>2</td>
<td>28 (>18 y)</td>
<td>FEV₁ <75%</td>
<td>F, 1 mg Neb x 1</td>
<td>IB, 0.5 mg Neb x 1</td>
<td>No</td>
</tr>
<tr>
<td>Reuben et al (1987)</td>
<td>MC, R, DB</td>
<td>E, Canada</td>
<td>4</td>
<td>148 (>18 y)</td>
<td>FEV₁ <70%</td>
<td>F, 1.25 mg Neb x 1</td>
<td>IB, 0.5 mg Neb x 1</td>
<td>Yes</td>
</tr>
<tr>
<td>Higgins et al (1988)</td>
<td>R, DB</td>
<td>E, England</td>
<td>2</td>
<td>40 (>18 y)</td>
<td>PEF <30%</td>
<td>S, 5 mg q120 min</td>
<td>IB, 0.5 mg q120 min</td>
<td>Yes</td>
</tr>
<tr>
<td>O’Donnell et al (1989)</td>
<td>R, DB</td>
<td>E, England</td>
<td>2</td>
<td>56 (>18 y)</td>
<td>PEF <35%</td>
<td>S, 10 mg q120 min</td>
<td>IB, 0.5 mg Neb x 1</td>
<td>Yes</td>
</tr>
<tr>
<td>Summers and Tara (1990)</td>
<td>R, DB</td>
<td>E, Australia</td>
<td>3</td>
<td>76 (16-70 y)</td>
<td>PEF <60%</td>
<td>S, 5 mg Neb x 1</td>
<td>IB, 0.5 mg Neb x 1</td>
<td>No</td>
</tr>
<tr>
<td>Cybulka and Emerman (1994)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>3</td>
<td>125 (>18 y)</td>
<td>FEV₁ <75%</td>
<td>S, 2.5 mg q60 min</td>
<td>Gly, 2 mg Neb x 1</td>
<td>Yes</td>
</tr>
<tr>
<td>Rodrigo and Rodrigo (1995)</td>
<td>R, DB</td>
<td>Sp, Uruguay</td>
<td>3</td>
<td>22 (18-50 y)</td>
<td>PEF <70%</td>
<td>S, 2.5 mg q45 min</td>
<td>IB, 0.5 mg q45 min</td>
<td>No</td>
</tr>
<tr>
<td>Karpel et al (1996)</td>
<td>MC, R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>384 (18-55 y)</td>
<td>FEV₁ <60%</td>
<td>F, 0.2 mg q1 min</td>
<td>DB, 0.1 mg q1 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Fitzgerald et al (1997)</td>
<td>MC, R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>342 (18-50 y)</td>
<td>FEV₁ <70%</td>
<td>S, 3 mg Neb x 1</td>
<td>IB, 0.5 mg Neb x 1</td>
<td>Yes</td>
</tr>
<tr>
<td>Garret et al (1997)</td>
<td>TC, R, DB</td>
<td>E, New Zealand</td>
<td>4</td>
<td>338 (18-55 y)</td>
<td>FEV₁ <70%</td>
<td>S, 2.5 mg q45 min</td>
<td>Niv = 3</td>
<td>IB, 0.5 mg q45 min</td>
</tr>
<tr>
<td>Lin et al (1998)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>4</td>
<td>55 (>18 y)</td>
<td>PEF <200 l/min</td>
<td>S, 2.5 mg q30 min</td>
<td>Niv = 3</td>
<td>IB, 0.5 mg Neb x 1</td>
</tr>
<tr>
<td>Kamei et al (1999)</td>
<td>MC, R</td>
<td>E, Japan</td>
<td>3</td>
<td>64 (>18 y)</td>
<td>FEV₁ <70%</td>
<td>F, 0.2 mg q1 min</td>
<td>DB, 0.1 mg q1 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Weber et al (1999)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>67 (>18 y)</td>
<td>PEF <70%</td>
<td>S, 10 mg q1 h</td>
<td>Niv = 3</td>
<td>IB, 1 mg q1 h</td>
</tr>
<tr>
<td>Nakano et al (2000)</td>
<td>R, SB</td>
<td>E, Japan</td>
<td>4</td>
<td>74 (>18 y)</td>
<td>PEF <50%</td>
<td>S, 0.4 mg q20 min</td>
<td>DB, 0.4 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Rodrigo and Rodrigo (2000)</td>
<td>R, DB</td>
<td>E, Uruguay</td>
<td>5</td>
<td>180 (18-50 y)</td>
<td>FEV₁ <50%</td>
<td>S, 0.4 mg q1 min</td>
<td>DB, 0.05 mg q1 min</td>
<td>No</td>
</tr>
<tr>
<td>Aggarwal et al (2002)</td>
<td>R</td>
<td>E, India</td>
<td>2</td>
<td>48 (13-50 y)</td>
<td>PEF <50%</td>
<td>S, 5 mg q30 min</td>
<td>Niv = 2</td>
<td>IB, 0.5 mg Neb x 1</td>
</tr>
</tbody>
</table>

Figure 1 Pooled relative risk for hospital admission (with 95% confidence interval) of eligible studies in children comparing the addition of anticholinergic agents to β₂ agonists (treatment) with β₂ agonists alone (control). Trials stratified according to intensity of anticholinergic treatment (single or multiple fixed dose protocols) and asthma severity (moderate or severe patients).
(single v multiple fixed dose protocol) suggested a trend towards a reduced risk of admission in children with the most severe asthma attack and treated with multiple doses of anticholinergics. The NNT to prevent one admission among severe patients was 7 (95% CI 4 to 16). The hospital admission rate did not change when we excluded studies without explicit admission criteria (RR = 0.73; 95% CI 0.62 to 0.85, I² = 0%). The use of systemic CCS did not modify this outcome (RR = 0.69; 95% CI 0.58 to 0.81).

Nine trials totalling 1556 adults with acute asthma reported hospital admissions. One trial reported data stratified on asthma severity (moderate and severe patients). There was a significant reduction in the hospital admission rate favouring anticholinergic use (fig 2). The NNT was 14 (95% CI 9 to 30). There was no evidence of systematic bias identified by the measure of funnel plot asymmetry. Again, no significant heterogeneity was demonstrated. Stratification on the basis of baseline severity (moderate v severe) and the intensity of the anticholinergic protocol (single v multiple fixed dose) suggested a trend towards a reduced risk of admission in adults with the most severe asthma attack and treated with multiple doses of anticholinergics (fig 3). Intensity of anticholinergic treatment greatly influenced the reduction in hospital admission; a greater reduction was seen in trials using three or more doses of anticholinergic agents (RR = 0.53; 95% CI 0.36 to 0.76, p = 0.0006; NNT = 6; 95% CI 4 to 13). These results did not change when only studies with explicit admission criteria were pooled (RR = 0.58; 95% CI 0.38 to 0.87, I² = 28%) or when systemic CCS were used (RR = 0.74; 95% CI 0.48 to 1.14).

Spirometric testing

Nine studies examined the response to treatment in children and adolescents with acute asthma using spirometry. Five trials reported the percentage change in FEV₁ (12, 14–16, 25, 27) three reported the percentage change in PEFR (29–31) and one reported the change in percentage predicted FEV₁ (32). One trial reported data stratified by severity of obstruction (moderate and severe). Combining treatment produced a significantly greater increase in spirometric parameters than β₂ agonists alone (SMD = 0.54; 95% CI 0.25 to 0.63) while those treated with one or two doses of anticholinergic had a significant difference in FEV₁ of 0.44 l (95% CI 0.38 to 0.87, I² = 28%) or when systemic CCS were used (SMD = 0.74; 95% CI 0.48 to 1.14).

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Treatment</th>
<th>Control</th>
<th>RR (random)</th>
<th>RR (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 Single-dose (Immediate)</td>
<td>Cochrane (3)</td>
<td>15/45</td>
<td>1.30 (0.72, 2.34)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fajardo (26)</td>
<td>117/115</td>
<td>0.53 (0.34, 0.84)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schild (27)</td>
<td>216</td>
<td>0.80 (0.35, 2.02)</td>
<td></td>
</tr>
<tr>
<td>03 Multiple-dose (Immediate)</td>
<td>Cochrane (3)</td>
<td>3/28</td>
<td>0.31 (0.1, 1.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fajardo (26)</td>
<td>28</td>
<td>0.31 (0.1, 1.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schild (27)</td>
<td>27</td>
<td>0.31 (0.1, 1.01)</td>
<td></td>
</tr>
<tr>
<td>03 Multiple-dose (Delayed)</td>
<td>Cochrane (3)</td>
<td>7/10</td>
<td>0.80 (0.51, 1.31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fajardo (26)</td>
<td>17/33</td>
<td>0.69 (0.49, 1.03)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schild (27)</td>
<td>22/29</td>
<td>0.30 (0.05, 1.77)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Pooled relative risk for hospital admission (with 95% confidence interval) of eligible studies in adults comparing the addition of anticholinergic agents to β₂ agonists (treatment) with β₂ agonists alone (control). Trials stratified according to intensity of anticholinergic treatment (single or multiple fixed dose protocols) and asthma severity (moderate or severe patients).

www.thoraxjnl.com

Data were recorded 60–120 minutes after the last combined treatment. When all the studies were pooled a significant improvement in spirometric parameters favoured the combination treatment (SMD = 0.54; 95% CI −0.28 to −0.81, p = 0.0001). However, there was significant heterogeneity (χ² = 23.41, df = 10, I² = 57.3%, p = 0.009). When we pooled the seven studies that reported FEV₁ data (change in percentage predict or percentage change) stratified by the intensity of anticholinergic treatment (one or two doses v more than two doses), homogeneity was achieved (fig 3. The use of more than two doses of anticholinergics showed more benefit than lower doses. There was no evidence of systematic bias. Patients treated with one or two doses of anticholinergic agents had a mean difference of change in FEV₁ of 12.4% (95% CI 5.4 to 19.4) compared with those who did not receive anticholinergics, while those who received more than two doses had a mean difference of 16.3% (95% CI 8.2 to 24.5).

Spirometric data were reported by 16 studies in adult subjects. Two trials showed data stratified by severity of obstruction (moderate and severity). Eight trials reported FEV₁ (12, 14–16, 25, 27) and one reported PEFR (% predicted). Combined treatment produced a significantly greater increase in spirometric parameters than β₂ agonists alone (SMD = 0.36; 95% CI −0.23 to −0.49, p = 0.00001). There was a significant heterogeneity between trials (χ² = 25.5, df = 15, I² = 41.3%, p = 0.04). Homogeneity was achieved when studies that reported PEFR (%min) were stratified by intensity of anticholinergic treatment (fig 4). Again, the use of more than two doses of anticholinergics produced a greater benefit than one or two doses and there was no evidence of systematic bias. As previously observed for PEFR, patients treated with more than two doses of anticholinergics had a significant difference in FEV₁ of 0.44 l (95% CI 0.23 to 0.63) while those treated with one or two doses had a difference of only 0.15 l (95% CI 0.05 to 0.24).

Other outcomes

Three paediatric studies (12, 24) reported a significant reduction in the clinical score after combined treatment (SMD = −0.29;
Trials stratified according to the intensity of anticholinergic treatment (one or two doses vs more than two doses).

Thus, anticholinergic agents are particularly beneficial in patients with moderate to severe obstruction (FEV, <70% of predicted) treated with multiple dose fixed protocols consisting of three or more doses of an anticholinergic. These patients had a reduced hospital admission rate of 30-45% and only 6-14 subjects need to be treated to prevent one hospital admission. This is a very relevant finding since hospital admissions count for the largest part of direct health costs for asthma in most countries, and children or adults with more severe asthma attacks are more prone to be admitted to hospital. However, this review did not identify any beneficial effects of anticholinergic agents in patients with mild acute asthma. The fact that the use of systemic CCS

DISCUSSION

This systematic review constitutes an effort to incorporate the best evidence available up to April 2005 on the role of inhaled anticholinergic agents added to β2 agonists in children, adolescents, and adults with acute asthma in the ED setting. New data were found which we added to previous review. Thus, 10 new randomised trials (four in children) and six in adults with a total of 809 patients have been added, representing an increase of 22% on the previous sample. Unlike the previous reviews, this study has enabled analysis of the effect of cumulative doses, particularly in adult studies. Several important conclusions can be made. Overall, our analysis confirmed that early administration of inhaled anticholinergic agents with β2 agonists lead to a reduction in admission rates of both children and adults of 30%. Baseline severity and the intensity of the anticholinergic protocol clearly influenced the magnitude of the benefit. Thus, anticholinergic agents are particularly beneficial in patients with moderate to severe obstruction (FEV, <70% of predicted) treated with multiple dose fixed protocols consisting of three or more doses of an anticholinergic. These patients had a reduced hospital admission rate of 30-45% and only 6-14 subjects need to be treated to prevent one hospital admission. This is a very relevant finding since hospital admissions count for the largest part of direct health costs for asthma in most countries, and children or adults with more severe asthma attacks are more prone to be admitted to hospital. However, this review did not identify any beneficial effects of anticholinergic agents in patients with mild acute asthma. The fact that the use of systemic CCS
Anticholinergics in acute asthma

has not shown a significant effect in agreement with the evidence that they require 6–12 hours to modify outcomes such as hospitalization or mortality. Differences of anticholinergic agents in combination with a β2 agonist. In adults, treatment with more than two doses produced clinically significant improvements in both FEV1 (0.44 l) and PEFR (50.5 l/min).46

In our meta-analysis we also looked at secondary outcomes and side effects but these were difficult to analyse because there was insufficient information to be pooled. A few of the studies in children reported a significant reduction in different clinical scores after combined treatment. There was no apparent increase in the occurrence of side effects such as tremor or heart rate among subjects treated with single or multiple dose protocols.

Strengths and limitations of the study

This study met most of the methodological criteria suggested for scientific reviews.44 Similar to all systematic reviews, this meta-analysis is limited by the quality and quantity of existing research and how data are reported. A comprehensive search of the published literature for potentially relevant studies was conducted using a systematic strategy to avoid bias. All of the 32 trials were randomised, and 26 were double blind. Exclusion of trials with lower methodological quality did not affect the conclusions. Assessment of the consistency of effects across studies is an essential part of the review to determine the generalisability of the findings; low values of heterogeneity (<15%) were obtained in all group and subgroup comparisons. The generalisability of study results to different countries should also be considered, particularly with regard to the hospital admission criteria. The decision to admit patients is based on many factors including past asthma and current exacerbation histories and spirometric test results, as well as clinical factors. Important variations in admission criteria could therefore influence the results. However, the results did not change when we analysed only studies with explicit criteria for admission to hospital.

References

2 National Institutes of Health. Global strategy for asthma management and prevention, NIH Publication 02-3659, 2004
6 Plotnick LH, Ducharme FM. Combined inhaled anticholinergics and bet2-agonists for initial treatment of acute asthma in children. Cochrane Database of Systematic Reviews, 2000 Issue 3, CD000060
33 Rodríguez G, Rodrigo C. Tratamiento de la crisis asmática con altas dosis de salbutamol y bromuro de ipratropio administrados mediante inhalador de dosis mediana e inaloterapia. Pneumol Torác 1995;8:175–84.
Nitric oxide protects against airway hyperresponsiveness

Nitric oxide (NO) is a highly active endogenous bronchodilator and, although increased levels are found in asthmatic lungs, the link between NO and asthma has remained elusive. NO is short lived in vivo but it reacts with cysteine sulphurs (thiols) in proteins to form more stable S-nitrosothiols (SNOs) which act as a source of bioactive NO. S-nitrosoglutathione (GSNO) is the most abundant SNO found in the airways where its levels are governed by the enzyme GSNO reductase (GSNOR). However, GSNO is depleted in asthmatic airways, suggesting a protective role.

In this study the authors showed that GSNOR levels were raised in the lungs of mice exposed to the allergen ovalbumin (OVA), probably due to lysis of airway epithelial cells and leucocytes. SNO levels were depleted. GSNOR gene knockout mice exposed to OVA had raised levels of SNOs in the airway, reduced basal airway tone, and no response to methacholine. Levels of type II inducible NO synthase were similar to wild type mice, as was the inflammatory response measured by bronchoalveolar fluid cell counts and IL-13, serum total IgE, and mucus metaplasia. Tracheal rings from wild type mice became desensitised to repeated β-adrenergic stimulation, whereas GSNOR knockout mice did not and so retained the capacity to relax.

This is the first study to show a definitive link between NO and airway hyperresponsiveness (AHR). NO, when present as SNOs, protects against AHR through modulation of β-adrenoreceptor function. SNO levels are regulated by GSNOR which is raised in asthmatic airways, and the resulting lack of SNOs promotes AHR.

P Kewin
Wellcome Clinical Research Fellow, Department of Respiratory Medicine, Gartnavel General Hospital, Glasgow, UK; pk49y@clinmed.gla.ac.uk
Anticholinergics in the treatment of children and adults with acute asthma: a systematic review with meta-analysis
G J Rodrigo and J A Castro-Rodriguez

Thorax 2005 60: 740-746 originally published online June 17, 2005
doi: 10.1136/thx.2005.047803

Updated information and services can be found at:
http://thorax.bmj.com/content/60/9/740

These include:

References
This article cites 41 articles, 4 of which you can access for free at:
http://thorax.bmj.com/content/60/9/740#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/65/12/1118.full.pdf
/content/63/11/1029.3.full.pdf

Topic Collections
Articles on similar topics can be found in the following collections
Child health (843)
Asthma (1782)
Clinical trials (epidemiology) (557)
Emergency medicine (185)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
the UK may not see a single case of tuberculosis in several years.

Nevertheless, given the consequence of pulmonary tuberculosis to the individual and society, it is appropriate for clinicians and general practitioners to ensure that tuberculosis is among the differential diagnoses in patients with relevant symptoms and signs and to investigate for tuberculosis fairly promptly. Every attempt should be made to obtain a microbiological diagnosis. As Jolobe points out, it is also true that patients with smear-negative culture-positive tuberculosis can transmit infection, although less so than those who have a positive smear from direct sputum examination. Exclusive extrapulmonary tuberculosis is, however, not infectious and the suggestion to the contrary is erroneous.

In view of the current rise in the incidence of tuberculosis, without high case detection and the adequate treatment of cases, tuberculosis may not remain an uncommon illness in the UK. Vigilance for both pulmonary and extrapulmonary tuberculosis is required.

Ibrahim Abubakar, Michelle E Kruijshaar
Tuberculosis Section, Health Protection Agency Centre for Infections, London, UK
Correspondence to Ibrahim Abubakar, Tuberculosis Section, Health Protection Agency, 61 Colindale Avenue, Colindale, London NW9 5EQ, UK; ibrahim.abubakar@hpa.org.uk

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 24 August 2010
Published Online First 1 October 2010
Thorax 2010;65:1117—1118.
doi:10.1136/thx.2010.149708

REFERENCES

CORRECTION
doi:10.1136/thx.2005.040444
had a chest CT scan on referral. They fail, however, to describe a role for chest CT, but do imply that it may be indicated for patients undergoing video-assisted thoracoscopic drainage (VATS). There is no evidence in the current literature supporting the use of CT scans before VATS. The British Thoracic Society guidelines do not recommend routine CT scans in children with empyema.\(^1\)

In our centre all patients with empyema requiring intervention undergo VATS (approximately 40/year). We would suggest that chest CT scanning is not indicated before VATS in nearly all cases. We have found chest CT scans to be helpful, however, in situations where the patient has not responded to appropriate treatment with antibiotics and VATS. In this situation the possibilities are reaccumulation of pleural fluid, abscess formation or more extensive parenchymal involvement, differential diagnoses that are distinguished by CT scanning and information that is critical to the decision to reoperate (or not).

In addition, Jaffe et al do not take the opportunity to critically examine the role of chest ultrasound scans in patients with empyema. In our experience, clinical examination and chest radiography can determine the presence of pleural fluid. If the purpose of the ultrasound scan is to determine whether the fluid is simple (a parapneumonic effusion) or organised (empyema), this can be achieved more simply with a lateral decubitus or erect chest radiograph. The decision to undertake definitive management with urokinase or VATS is determined by the presence of unremitting infection and/or fluid volume in the pleural space. It is an outdated paradigm that the distinction between simple and organised pleural fluid makes any difference to subsequent treatment or outcome. The main use for ultrasound scanning should be for those children who are found to have a unilateral white-out on the chest radiograph at presentation and for whom the distinction between pleural space and parenchymal disease is difficult to make.

J Massie, N Pillarisetti, S Ranganathan
Department of Respiratory Medicine, Royal Children’s Hospital, Melbourne, Australia

Correspondence to: Associate Professor J Massie, Department of Respiratory Medicine, Royal Children’s Hospital, Parkville, Melbourne 3052, Australia; john.massie@rch.org.au

Competing interests: None.

Accepted 26 June 2008

REFERENCES

Author’s response
We thank Massie et al for correctly questioning the clinical need for routine chest CT scanning before performing video-assisted thoracoscopic surgery (VATS). Our study was pragmatically designed to reflect clinical practice in our institute, where thoracic surgeons routinely request a preoperative CT scan for use as a “road map” when performing minimally invasive endoscopic surgery where direct visual access is limited. This helps to plan and assist in placement of the ports and instruments in order to decrease risk and avoid potential complications such as bronchopleural fistula which would result as a consequence of puncturing the lung parenchyma in close proximity to the pleura. We agree with them that there is no evidence base to support this practice in terms of risk, and our study was not designed to answer this question.

The principle of providing surgical “road maps” (which cross-sectional imaging now provides) is prevalent in many areas of cardiothoracic imaging where CT and MRI are added as an adjunct to echocardiography and ultrasound scans in order to enhance anatomical (and, indeed, sometimes functional) information to enhance quality and provide a safer more informed patient journey.

We are surprised that Massie et al advocate the use of a lateral decubitus chest radiograph in place of an ultrasound scan which is not, in fact, a recommendation of the BTS guidelines. Indeed, this would be a retrograde step in terms of the quality of information and the radiation burden, and should only be advocated where there is no access to ultrasound.

As discussed in our paper, ultrasound is an invaluable tool as it is cheap, mobile, easy to use, can differentiate transonic from purulent fluid, solid lung from fluid and enables the radiologist to mark the spot for chest drain insertion. Although it has been used to stage the disease, we agree that it is not useful in predicting the clinical outcome as was evident in our study. Importantly, ultrasound does not carry a radiation burden.

One of the key messages we had hoped to emphasise in our study is the critical need to reduce exposure of children to unnecessary radiation. With this in mind, we disagree with Massie et al and continue to advocate the use of ultrasound as the most important imaging modality in managing children with empyema. The BTS guidelines also support this view.

G J Rodrigo, J A Castro-Rodriguez. Anticholinergics in the treatment of children and adults with acute asthma: a systematic review with meta-analysis (Thorax 2005;60:740–6). This article was originally published with an incorrect digital object identifier (doi). It has been updated with the correct doi: 10.1136/thx.2005.047803. We apologise for any inconvenience caused.

T Hirano, T Yamagata, M Gotha, et al. Inhibition of reactive nitrogen species production in COPD airways: comparison of inhaled corticosteroid and oral theophylline (Thorax 2006;61:761–6). This article was originally published with an incorrect digital object identifier (doi). It has been updated with the correct doi: 10.1136/thx.2005.058156. We apologise for any inconvenience caused.

A Jaffe, 1 A D Calder, 2 C M Owens, 3 S Stanovec, 2 S Sonnappa 1, 2
1 Children’s Hospital, Randwick and University of New South Wales, Sydney, Australia; 2 Department of Radiology, Great Ormond Street Hospital for Children NHS Trust, London, UK; 3 Portex Anaesthesia, Intensive Therapy and Respiratory Unit, Institute of Child Health, London, UK; 4 Department of Respiratory Medicine, Great Ormond Street Hospital for Children NHS Trust, London, UK

Correspondence to: Dr A Jaffe, Department of Respiratory Medicine, Sydney Children’s Hospital, High Street, Randwick, Sydney, NSW 2031, Australia; adam.jaffe@sesihs.health.nsw.gov.au

Competing interests: None.

CORRECTIONS
doi:10.1136/thx.2008.101691corr1

doi:10.1136/thx.2005.047803corr1

doi:10.1136/thx.2005.058156corr1

doi:10.1136/thx.2005.057935corr1

J Batra, T P Singh, U Mahalirajan, et al. Association of inducible nitric oxide synthase with asthma severity, total serum immunoglobulin E and blood eosinophil levels (Thorax 2007;62:16–22). This article was originally published with an incorrect digital object identifier (doi). It has been updated with the correct doi: 10.1136/thx.2005.057935. We apologise for any inconvenience caused.