COPD, restrictive syndrome and inflammation

In a recent issue of Thorax Gan et al published a systematic review and meta-analysis of 14 reports which confirmed the strong association between COPD and biological markers of systemic inflammation. In six reports COPD was diagnosed by the presence of a ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC) ratio lower than 0.7. However, in the remaining eight studies this measure was not available, and the authors assumed that all participants in these cases the corresponding highest quartile group served as control. Since a COPD diagnosis based on a decreased FEV1/FVC ratio was lacking in eight reports, the possibility cannot be excluded that a certain number of patients included in the meta-analysis did not have COPD but, rather, a restrictive ventilatory defect. This could be particularly true for participants in the study by Engstrom et al who were characterised only by a low FVC.

According to the current GOLD guidelines, only an FEV1/FVC ratio lower than 0.7 indicates airflow obstruction, thus allowing a COPD diagnosis. Indeed, in the absence of particular pulmonary diseases, many subjects show a homogenous decrease in all dynamic lung volumes (FEV1, FVC, PEF) without any change in the FEV1/FVC ratio, and are thus considered to have “impaired lung function”. The occurrence of respiratory symptoms, systemic inflammation, and the increased risk of cardiovascular diseases are the only features that subjects with restrictive disease share with COPD. In fact, whereas COPD is characterised by a decrease in body mass index and blood lipids, subjects with restrictive disease often have abdominal obesity, insulin resistance, and other metabolic risk factors.

Although we believe that most of the included patients were affected by COPD, the possible inclusion of patients with restrictive lung disease may have altered the statistical conclusions of the meta-analysis.

In addition, the decision to select patients in the lowest quartile of FEV1 and FVC prevented the authors from confirming the absence of inflammation in mild COPD (GOLD stage I and II), a finding previously reported by the same group in a study not included in this meta-analysis.

Because patients with restrictive lung disease and those with COPD have different features, the generic term “impaired lung function” should not be used. Future studies of the role of inflammation and cardiovascular risk conditions in patients with respiratory disease, and those investigating the outcome in these subjects, should clearly distinguish between these two groups of patients.

F L Fimognari, L Moro, R Antonelli Incalzi
Chair of Geriatrics, University Campus Biomedico of Rome, Italy
Correspondence to: Dr Filippo Luca Fimognari, Centro per la Salute dell’anziano, Università Campus Biomedico di Roma, Via dei Castorpi 150, 00128, Rome, Italy; filippo.fimognari@virgilio.it

References

Authors’ reply

We wish to thank Dr Fimognari and colleagues for highlighting the difficult issue of defining chronic obstructive pulmonary disease (COPD). In most circumstances a spirometric cut off is used to define COPD, but there is no uniform consensus on what that should be and different expert panels have promulgated different spirometric cut off values.1,2 COPD is a disease characterised by lung inflammation and patient symptoms (most notably dyspnoea). Studies have shown that the relationship between airway inflammation and patient symptoms with forced expiratory volume in 1 second (FEV1) is a continuum and is not threshold dependent.3 Thus, any attempts to impose FEV1 or the ratio of FEV1 to forced vital capacity (FVC) limits in defining COPD are bound to be arbitrary and contentious. Rather than relying on arbitrary cut off values for large population based studies, it is reasonable (and useful) to compare the outcome of interest—in this case, systemic inflammation—between extremes of FEV1 (that is, worst FEV1, quartile to best quartile group). This method avoids imposing any arbitrary constraints in the definition of COPD and allows maximal utilisation of the data points. However, a potential limitation of this approach is the possibility of diagnostic misclassification between restrictive and obstructive lung diseases. To specifically address this concern, we excluded population based studies in which a FEV1/FVC ratio was not used to define COPD3 and reanalysed the C-reactive protein (CRP) and fibrinogen data. Even after the exclusion of these studies, the standardised mean difference in CRP between COPD and control subjects was 0.68 units (95% confidence interval (CI) 0.38 to 0.98) or 4.85 mg/l (95% CI 1.92 to 7.78). For the fibrinogen data, the standardised mean difference in fibrinogen between COPD and control subjects was 0.48 units (95% CI 0.43 to 0.54) or 0.42 g/l (95% CI 0.00 to 0.84). These results indicate that the possible contamination of individuals with restrictive defect in the groups with low FEV1, or FVC did not influence the overall findings. Finally, we did not include data from one of our previous reports3 because the study sample was taken from the same source population as the study by Mannino and colleagues which was included in the meta-analysis.

D D Sin, W Q Gan, S F P Man
Department of Medicine, University of British Columbia, Vancouver, Canada
A Senthilvelan
Department of Public Health Sciences, University of Alberta, Edmonton, Canada

Correspondence to: Dr D D Sin, Associate Professor of Medicine, University of British Columbia, The James Hogg ICAPTNRE Centre, Vancouver, British Columbia, Canada V6Z 1Y6; dsin@rcf.ubc.ca

References

www.thoraxjnln.com

TB screening and anti-TNFα treatment
Reactivation of tuberculosis (TB) is a major concern during treatment with TNF inhibitors.1 Different guidelines to detect active and latent TB have been recommended in various countries before starting treatment with these drugs. There is evidence that their application was complicated with sarcoidosis in patients with rheumatoid arthritis (RA) and with other spondyloarthropathies or in those with inflammatory bowel diseases. In these patients chest radiography is essential if we do not want to miss a significant proportion of cases. The Italian guidelines for TB screening before starting treatment with TNF inhibitors allow recognition of these cases, increasing the indications for preventive chemotherapy.

References

Risedronate induced BOOP complicated with sarcoidosis
Bisphosphonates are synthetic compounds that are taken up preferentially by skeletal tissue and suppress osteoclast mediated bone resorption. They are being used increasingly in the treatment of osteoporosis.1 Broncho-constriction caused by bisphosphonates has been described but drug induced pneumonitis has not previously been reported. This is the first report of interstitial pneumonia induced by the bisphosphonate risedronate. A woman developed an intramural mass in her right arm at the age of 51 years. Sarcoidosis was diagnosed by non-necrotising epithelioid granulomas in the resected specimen of the mass, bilateral hilar lymphadenopathy on the chest radiograph, a negative reaction to tuberculin test, and an increase in the serum angiotensin converting enzyme (ACE) level to 27.9 U/ml. She had pain in her right arm due to the mass and was treated with prednisolone for 10 years. The mass disappeared and the ACE level fell to 9.6 U/ml. At the age of 66 years treatment was started with risedronate for osteoporosis. Two months later she developed a dry cough, high fever, and bilateral infiltrative shadows were seen on the chest radiograph (fig 1A). A high resolution CT scan showed multiple consolidation and ground glass opacity with interlobular and intralobular interstitial thickening (fig 1B). Medial statistical lymph nodes measuring about 1 cm and small amounts of bilateral pleural effusion were visible on the CT scan. Chest auscultation showed no crackles and neither the superficial lymph nodes nor the intramuscular mass lesions were palpable. Laboratory examination showed white blood cell (WBC) count of 9100/ml, C-reactive protein (CRP) 7.31 mg/dl, lactate dehydrogenase (LDH) 201 U/ml, ACE 5.3 U/ml, and lysozyme 8.9 U/ml. Total cell count of the bronchoalveolar lavage (BAL) fluid performed on left B4 was 4.18×107/ml with 43.4% macrophages, 15.8% neutrophils, 24.2% lymphocytes, and 16.0% eosinophils. The CD4+/CD8+ ratio of lymphocytes in the BAL fluid was 1.37. No pathogenic organisms were detected in the BAL fluid, and transbronchial lung biopsy specimens revealed no granulomas but cellular alveolitis with intraluminal polypoid organisation consistent with bronchiolitis obliterans organising pneumonia (BOOP). These findings ruled out reactivation of sarcoidosis.

Treatment with several antibiotics did not improve her symptoms and laboratory findings, so all her drugs (risedronate, pravastatin, neurotropin, menatetrenone, and sairci-to) were stopped because drug induced pneumonitis was suspected. Her high fever began to resolve about 5 days after stopping the drugs and her symptoms and the abnormal shadows on the chest radiograph disappeared 2 weeks later. The WBC and CRP level were also normalised. A drug lymphocyte stimulation test (DLST) on her peripheral lymphocytes gave a positive reaction only to risedronate with a stimulation index of 265%. There was a negative reaction to the other four drugs, all of which had been administered to her for at least 4 years. She was therefore diagnosed with risedronate induced pneumonitis.

Amino-bisphosphonates including alendronate, pamidronate, and risedronate are reported to induce pro-inflammatory cytokines from macrophages in vitro and in vivo.

www.thoraxjnl.com
and to cause transient pyrexia, a flu-like syndrome, and serological changes resembling a typical acute phase reaction in some cases. They are also reported to induce anterior uveitis through these reactions or specific immunological responses. However, pneumonitis associated with amino-bisphosphonates has not been previously reported. In this case the specific immunological reaction to risedronate by DLST suggested that her lung disease was caused by the drug rather than by non-specific release of pro-inflammatory cytokines.

Osteoporosis is a common disease and bisphosphonates will be prescribed frequently. The possibility of pneumonitis caused by risedronate and other bisphosphonates needs to be kept in mind.

T Arii, Y Inoue, S Hayashi, S Yamamoto, M Sakatani National Hospital Organization Kinki-chuo Chest Medical Center, Sakai, Japan Correspondence to: Dr Y Inoue, National Hospital Organization Kinki-chuo Chest Medical Center, 1180 Nogashino-cho, Sakai City, Osaka 591-8555, Japan; giichi@kch.hosp.go.jp doi: 10.1136/thx.2005.043893

References

Bacterial denitrification, nitric oxide and airway pH in CF

The recent findings of Ojoo et al are of considerable interest. However, one confounding factor that appears to have been overlooked in recent studies of airway pH and exhaled breath nitric oxide (eNO) levels in cystic fibrosis (CF) is that of bacterial respiration. Pseudomonas aeruginosa adopts an anaerobic and biofilm mode of existence within the CF lung and, under such environmental conditions, it uses NO rather than oxygen as an electron donor to generate energy via oxidative phosphorylation. This bacterial denitrification results in the stepwise reduction of NO to nitrite (NO$_2^-$), nitrate (NO$_3^-$), and ultimately ammonium ($\text{NH}_4^+$). It is suggested that such an important metabolic process has been ignored as the high energy requirements of large bacterial loads in the CF lung imply substantial consumption of NO. This could explain both the low levels of measured eNO and high (NO$_2$)/(NO$_3$) content described in the sputum and exhaled breath condensates of patients with CF. The products of denitrification are likely to alter the chemoattractant profile substantially, including the pH of the airway. Further research is needed to examine how the metabolic activity of bacteria and the host inflammatory response interact to change the chemical composition of the lung microenvironment in CF.

D W Reid
Medical School, University of Tasmania, Hobart, Australia 7000; d.e.reid@utas.edu.au

Authors’ reply

We thank Dr Reid for his interest in our paper. Bacterial denitrification involves the stepwise reduction of oxides of nitrogen to support oxidative phosphorylation. Gaston et al. have previously proposed that consumption of nitric oxide (NO) during this process might be one factor contributing to the low fractional exhaled NO concentration (FENO) seen in cystic fibrosis (CF). It is clearly not the only mechanism, however, as decreased FENO levels have been reported in infants with newly diagnosed CF, and reduced NO generation is also described in cystic fibrosis transmembrane conductance regulator (CFTR) deficient mice. Bacterial denitrification would be expected also to deplete nitrate (NO$_3^-$) and nitrite (NO$_2^-$) levels in the local milieu and to increase its pH.

In our study 14 of the 18 subjects with stable CF were chronically colonised with Pseudomonas aeruginosa. Interestingly, FENO levels were indeed significantly lower in CF subjects with P aeruginosa than in those without (2 (1) v 7 (5) ppb; p = 0.015). The median NO$_2$ and NO$_3$ levels in exhaled breath condensate (EBC) were also lower in subjects with P aeruginosa, although this difference did not reach statistical significance. Irrespective of the presence of the organism, values for both NO$_2$ and NO$_3$/NO$_2$ were substantially higher in CF subjects than in healthy controls. There was little difference in the median pH of the EBC between CF subjects with and without P aeruginosa.

These further analyses provide support for the suggestion that denitrification by P aeruginosa may modulate the nitrogen redox balance in CF airways. They are consistent with the findings of Gaston et al. who described an increase in ammonium ($\text{NH}_4^+$) generation by P aeruginosa in vitro and also a reduction in $\text{NH}_4^+$ levels in the sputum of CF subjects after antipseudomonal treatment. Further comparisons involving larger numbers of CF subjects with and without P aeruginosa, and investigation of the relative impact of antimicrobial therapies in the two groups, may help to define the extent to which this mechanism operates in CF airways in vivo. Its relevance to airway pathophysiology, however, will be more difficult to determine.

J C Ojoo, S A Mulrennan, J A Kastelik, A H Morice, A E Redington
Division of Academic Medicine, Postgraduate Medical Institute, University of Hull, Hull, UK

Correspondence to: Dr A E Redington, Department of Respiratory Medicine, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK; aredington@hhst.hsl.nhs.uk

References

Exhaled NO in diffuse alveolar haemorrhage

The syndrome of diffuse alveolar haemorrhage (DAH) is associated with a wide variety of diseases. Haemoptysis, falling haemoglobin, and air space opacities on the chest radiograph constitute the clinical features suggestive of DAH which should be confirmed by bronchoalveolar lavage (BAL). However, haemoptysis can be absent in up to one third of patients. A sensitive marker of DAH is a sequential increase in the carbon monoxide lung transfer factor (Tco). This results from the increased availability of haemoglobin within the alveolar compartment which avidly binds carbon monoxide. Although informative, the Tco often cannot be measured in patients with DAH as they might be too ill. Nitric oxide (NO) combines with haemoglobin much faster than carbon monoxide and is continuously produced in the respiratory tract. Exhaled NO can be measured either online or offline even in acutely ill patients by collection of exhaled air in a bag for subsequent analysis. We reasoned that DAH could be associated with low levels of exhaled NO because of the increased availability of haemoglobin within the alveolar compartment binding NO. A 52 year old non-smoking man with a history of allergic rhinitis and asthma was admitted with increasing dyspnoea. His asthma had been controlled by maintenance inhalation of salmeterol and fluticasone. In the previous 3 weeks the patient had experienced painful paraesthesias. On admission he was in mild respiratory distress with a peak expiratory flow rate of 415 l/min (92% of his personal best value), arterial oxygen tension ($P_{A\text{O}_2}$) 8.6 kPa (65 mm Hg), haemoglobin 11 g/dl, and WBC 23 000 (eosinophils 23%). Exhaled air was collected in a sample bag according to American Thoracic Society recommendations (inspiratory air NO concentration <3 ppb, expiratory flow rate 350 l/min and NO was measured in each 2 hours of collection using a chemiluminescent analyser (NIOX, Aerocline, Solna, Sweden). The initial level of exhaled NO was 4 ppb (normal reference value in our laboratory is 12 (2) ppb). Twelve hours later the haemoglobin fell to 9.1 g/dl, $P_{A\text{O}_2}$ was 7.2 kPa (54 mm Hg), and confluent air space opacities were apparent on the chest.


References
that, in acute pneumonia (which should be considered in the differential diagnosis), exhaled NO levels have been reported to be high, at least in the one published case series.

G Rollo, E Heffler, G Guida, R Bergia
Allergologia e Immunologia Clinica, Ospedale Mauriziano Umberto I and Dipartimento di Scienze Biomediche e Oncologia Umano, University of Torino, Italy

C Bucca
Ospedale Molinette and Dipartimento di Scienze Biomediche e Oncologia Umano, University of Torino, Italy

Correspondence to: Dr G Rollo, Allergologia e Immunologia Clinica, Ospedale Mauriziano, Largo Turati 62, 10128 Torino, Italy; grollo@mauriziano.it
Affiliated to the Italian Nitric Oxide Club.

Supported by a grant (ex 60%) from the Ministero Italiano dell’Università e della Ricerca Scientifica.

doi: 10.1136/thx.2005.040287

References

EXHALED BREATH CONDENSATE IN CHRONIC COUGH

Pharmacology of Asthma and COPD: 21–24 November 2005

This course will be held at Imperial College London at the National Heart and Lung Institute, in collaboration with Royal Brompton Hospital, Dovehouse Street, London SW3 6LY, UK.

This course is suitable for physicians or scientists with an interest in pharmacology and therapeutics of asthma and COPD (Course Organiser: Professor Peter Barnes).

Enquiries should be sent to: Postgraduate Education Centre, National Heart & Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London SW3 6LY. Tel: 020 7351 8172. Fax: 020 7351 8246. Email: shortcourses.nhli@imperial.ac.uk.

Epidemiology and Health Care Practice

The IEA-EEF European Congress of Epidemiology “Epidemiology and Health Care Practice” will be held in Utrecht, The Netherlands, from 28 June to 1 July 2006. The Congress is organised by epidemiologists from Utrecht University in collaboration with the Netherlands Epidemiology Society and will encompass a broad range of themes from the fields of epidemiology, public health and research in health care. For further information visit the website (www.euroepi2006.org) or email euroepi2006@iub.uu.nl.

The Dr HM (Bill) Foreman Memorial Fund

The TRUSTEES of the above fund invite applications for grants relating to study in Respiratory Disease, and allied fields (for example, microbiology, histopathology, radiology, biochemistry, and molecular biology).

Limited funds are available for registered medical practitioners to assist in travelling to countries other than their own to study Respiratory Disease, and also support for clinical research abroad.

Intending applicants should write for further details to: Dr Brian H Davies, Llandough Hospital, Penarth, Vale of Glamorgan, CF64 2XX.

NOTICES

CORRECTION

EXHALED BREATH CONDENSATE IN CHRONIC COUGH

In the March issue of Thorax the letter entitled “Exhaled breath condensate in chronic cough” by A Morice, C F Everett, and S A Mulreman which appeared on page 259 was inadvertently printed also on page 257 under the heading “EBP pH and chronic cough”. The publishers apologise for this error.

www.thoraxjnl.com
Risedronate induced BOOP complicated with sarcoidosis

T Arai, Y Inoue, S Hayashi, S Yamamoto and M Sakatani

Thorax 2005 60: 613-614
doi: 10.1136/thx.2005.043893

Updated information and services can be found at:
http://thorax.bmj.com/content/60/7/613.2

These include:

References
This article cites 5 articles, 1 of which you can access for free at:
http://thorax.bmj.com/content/60/7/613.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/