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Creatine supplementation may enhance pulmonary rehabilitation
in patients with COPD, but larger trials are needed

M
ultidisciplinary pulmonary reha-
bilitation now has an estab-
lished place in the management

of chronic disabling respiratory diseases,
particularly chronic obstructive pulmon-
ary disease (COPD).1 Rehabilitation is
being taken up widely on the strength of
the accumulated evidence. While the
effectiveness of rehabilitation is accept-
ed, there is still considerable interest in
refining and researching the individual
modalities of treatment that make up
the multidisciplinary intervention.
Exercise training is a key component

of an effective pulmonary rehabilitation
programme. In recent years a number of
approaches have been taken in an effort
to enhance the effectiveness of physical
training, particularly for more severely
disabled patients who may have reduced
muscle bulk and whose baseline exer-
cise capacity is particularly low. Broadly,
strategies have either concentrated on
acute interventions that enable subjects
to train at higher intensity or have
focused on altering underlying skeletal
muscle functioning. An example of the
former approach is the inclusion of
oxygen supplementation during training
in patients with hypoxaemia.2 3 Acute
oxygen supplementation does enhance
exercise performance and allows a
higher work output for training. How-
ever, its use in training programmes has
not been found to improve the overall
outcomes of rehabilitation. Taking the
alternative approach, attempts to restore
muscle function have seen a crossover
of techniques used for performance
enhancement in sport and other areas
of medicine. These interventions have
included nutritional supplementation,4

the use of anabolic steroids,5 and the
use of growth hormone.6 These kinds of
intervention do increase muscle bulk
but do not tend to produce benefi-
cial gains in terms of whole body
exercise and patient based outcomes in
patients disabled by COPD and low
muscle mass.

The underlying causes of the reduc-
tion in muscle mass in patients with
COPD are likely to be heterogeneous
and complex. They include imbalance in
caloric intake and expenditure, disuse,
the systemic effects of glucocorticoid
steroid treatment, low circulating
androgen levels, and systemic inflam-
mation. The high prevalence of low
muscle mass in patients with COPD is
now recognised, as is the adverse impact
of malnutrition in terms of disability,
health service usage, and mortality.7

THERAPEUTIC USE OF CREATINE
SUPPLEMENTATION
Set alongside these developments, there
has been a growing interest in recent
years in the potential for creatine supple-
mentation to benefit various patient
groups. When used as a dietary supple-
ment, creatine monohydrate increases
the availability of phosphocreatine in
skeletal muscle. Phosphocreatine contri-
butes a store of high energy phosphate
bonds available at the onset of exercise.
Following dephosphorylation, the crea-
tine then becomes available for subse-
quent regeneration of phosphocreatine. A
further effect of creatine is to increase
fat-free mass by mechanisms that are not
fully understood but which may have to
do with muscle water content. In view of
these effects, creatine monohydrate has
become widely used to enhance athletic
exercise performance, particularly in
activities characterised by short bursts
of activity rather than sustained effort.
As with other interventions, creatine
supplementation has also made the jump
to application in disease states.
In a recent review of therapeutic crea-

tine supplementation, Terjung et al8 high-
lighted a number of conditions including
neuromuscular diseases where possible
benefits to exercise capacity, muscle
strength, and muscle mass may be seen.
Mathews et al9 reported potential neuro-
protective effects related to oxidative

stress in an animal model of
Huntington’s disease.9 The potential for
improved cardiac function and skeletal
muscle performance in congestive heart
failure with creatine supplementation
has also been studied.10 The direct effect
of creatine supplementation on lung
function, enzymatic activity, and muscle
strength in patients with cystic fibrosis
has recently been reported in a pilot
study.11 The authors concluded that,
although no change in lung function or
enzymatic activity in respiratory epithe-
lial cells was evident, improvements in
muscle strength and general wellbeing
were seen. A number of studies have
addressed the potential benefits of crea-
tine supplementation in the elderly.
Although most studies have failed to
find significant effects,12 a more recent
study13 identified significant increases in
muscle strength, fat free mass, and total
body mass when creatine supplementa-
tion was offered in combination with
resistance training.

CREATINE SUPPLEMENTATION IN
COPD
With this background, it is perhaps
surprising that the effect of creatine
supplementation on muscle mass and
muscle function in patients with COPD
has been very little researched. This
situation begins to be remedied by a
paper in this issue of Thorax.
Fuld and colleagues14 report a rando-

mised controlled trial of creatine mono-
hydrate supplementation as an adjunct
to exercise training in patients with
moderately severe COPD. Their subjects
received a standard 2 week loading
regimen followed by a maintenance
dose of creatine monohydrate or placebo
in a randomised double blind fashion.
After the loading phase, subjects parti-
cipated in an exercise training pro-
gramme of two sessions per week for
16 weeks. Training sessions included
mobility and strength training together
with 20 minutes of endurance training
on a static bike. The primary outcome
variable was 10 metre incremental shut-
tle walk distance. Secondary outcomes
were body composition, muscle strength,
and cardiopulmonary responses to incre-
mental exercise testing and disease
specific health status. Although this
was essentially a negative study with
respect to its primary outcome vari-
able, the authors present intriguing
secondary outcome data. Firstly, fat-
free mass increased on average by
1.1 kg in the creatine supplemented
group, significantly more than in the
placebo group after the loading phase.
At the same time, significant benefits
in indices of upper and lower limb
muscle functioning were seen in the
creatine group compared with the
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placebo group. While the findings for
isolated muscle work were consistent,
no discernible trend or significance for
between-group differences was seen in
response to whole body exercise, either
on the cycle ergometer or corridor
walking tests. Thus, once again, appar-
ent benefits at a muscle level were not
translated into improvements in the
integrated response to whole body
exercise. Outcomes following exercise
training while continuing creatine sup-
plementation were compared with the
pre-creatine baseline. Improvements
were seen in terms of fat-free mass
and limb muscle functioning following
training in both groups, but the gap
between the creatine supplemented
and placebo groups widened. Again,
indices of the response to cycling and
walking exercise changed inconsis-
tently. Shuttle walking tests showed
significant improvements after training
but without appreciable differences
between groups. Perhaps the most
tantalising finding of the study is the
significantly greater improvement seen
in the creatine supplemented group in
St George’s Respiratory Questionnaire
(SGRQ) score after training. There are
certainly problems in interpreting the
results from this questionnaire in
groups of patients as small as 11.
However, the suggestion that creatine
supplementation can lead to improve-
ments in health status while improving
individual muscle function indepen-
dently of any effect on walking capa-
city is of great interest.

IMPLICATIONS OF STUDY
Everyday life is a series of varying
transitions from one level of exercise to
another and does not often approximate
to the conditions of an incremental or
endurance shuttle walk test. The phy-
siological effect of creatine is postulated
to be as a result of increased ready
availability of high energy phosphate
bonds within the muscles. These can be
used to sustain work rate increases
anaerobically until increased oxygen
delivery to the muscle can sustain

oxidative metabolism and eventually
repay the oxygen deficit. The effect of
creatine supplementation might there-
fore support the bioenergetic response
to changes in work output. It might
be that improving the ‘‘flexibility’’ of
response to short step changes in work
output is what is driving improvements
in health status in this study. While this
is an attractive hypothesis, there is a
problem with the confident interpreta-
tion of the present study. Exercise
training was accompanied by a surpris-
ing decrement in SGRQ scores in
the non-supplemented group, whereas
clinically important improvements were
seen in the creatine supplemented
group. In a group of patients prone to
exacerbation and unexpected changes in
health, much larger numbers of subjects
would be needed to provide results
confidently applicable to the generality
of COPD patients. Additionally, this
study begs the question as to whether
similar effects would be seen in the
context of multidisciplinary rehabilita-
tion rather than pure exercise training.
Thus, as many questions are raised as

are answered in the study reported by
Fuld and colleagues. However, there is a
prime facie case to answer as to whether
creatine supplementation will indeed
enhance the outcome of pulmonary
rehabilitation in its more usual multi-
disciplinary format. The challenge now
is to undertake a large randomised
controlled trial, powered to detect clini-
cally important differences in health
status, to test this hypothesis. We will
then be able to determine the potential
usefulness of creatine supplementation
in the context of multidisciplinary pul-
monary rehabilitation for patients dis-
abled by COPD.

Thorax 2005;60:525–526.
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Smoking and tuberculosis
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Smoking and tuberculosis: a chance or
causal association?
G H Bothamley
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Possible explanations for the association between smoking and
tuberculosis

I
n 1956 Doll and Hill1 wrote that ‘‘the
relationship between smoking and mortal-
ity from pulmonary tuberculosis is distinct,

but with a disease so influenced by social
factors more precise data are needed to justify
a direct cause and effect hypothesis’’.
The essential risk factors for human

tuberculosis are (1) the tubercle bacil-
lus, (2) a susceptible host, and (3) an
environment which allows the tubercle
bacilli to survive transit from one host to
the next. All other risk factors are
subsumed under these headings. If
smoking is a risk factor for tuberculosis,
then it must act by increasing the
susceptibility of the human host or the
probability of transmission by encoura-
ging infectious individuals to cough
(this requires smoking to be a social as
much as an individual pursuit). If the
association between smoking and tuber-
culosis is more apparent than real, then
smoking may be a pointer to other risk
factors. These include social class—itself
a marker for overcrowding, poor venti-
lation and rooms with no natural light
as well as poor nutrition—general ill
health and, increasingly, HIV infection
with prostitution and intravenous drug
use.

TUBERCULIN SENSITIVITY AND
SMOKING
Tuberculous infection and tuberculosis
as a disease are entirely different states.
The former is commonly characterised
by tuberculin reactivity (despite the
known problem of exposure to non-
tuberculous mycobacteria and the cross
reactivity of the mixture of antigens2).
Approximately one third of the world’s
population may be infected with the
tubercle bacillus, but only eight million
(0.4%) develop tuberculosis each year.
Studies conflict as to whether smok-

ing affects delayed hypersensitivity to
tuberculin. Kuemmerer and Comstock3

noted that tuberculin reactions were
greater in children where both parents
smoked, but they also observed that
education, urban residence, immigra-
tion, and overcrowding were significant
associations. Although the Heaf test
grade was found to be directly related

to pack-years of smoking in residential
homes for the elderly in the UK, social
class was not determined as a possible
confounding factor.4 A similar study in
Hong Kong showed no association with
smoking,5 while a survey of Vietnamese
immigrants in Australia suggested a
positive association between tuberculin
responses and smoking history.6 In
Norway, linear regression analysis asso-
ciated smoking and male sex with
greater tuberculin reactivity.7 In a study
in Kuwait tuberculin reactivity was
greater in smokers, and univariate ana-
lysis of variance showed a dose-response
to pack-years in healthy controls but not
in patients with tuberculosis.8 None of
these studies accounted for socioeco-
nomic status and its possible confound-
ing effect on smoking and tuberculosis.
In this issue of Thorax a study by Den

Boon et al9 in a socially homogeneous
group again shows that tuberculin
reactivity can be related to smoking,
especially if this constituted more than
15 pack-years. More interestingly, a
prospective study in the United States
examined whether smokers were more
likely to have developed a positive
tuberculin reaction while in prison.10

Only those who had smoked for more
than 15 years were more likely to show
tuberculin conversion (relative risk 2.12,
95% confidence interval 1.03 to 4.36).
The authors concluded that the cumu-
lative effect of prolonged smoking was
more significant than the number of
cigarettes smoked in increasing the
likelihood of infection by Mycobacterium
tuberculosis in prison. The broad con-
fidence intervals, with the lower figure
giving an attributable risk of ,3% to
smoking for tuberculin conversion,
recommend a further study with greater
power and with an assessment of the
duration of imprisonment. Exposure to
M avium-intracellulare is common in the
southern United States and may affect
tuberculin conversion. Concurrent HIV
infection is more common in those aged
20–35 years and might also confound
tuberculin sensitivity. A future prospec-
tive study would need to examine the
social behaviour of chronic smokers and

the likelihood of the index case being
within those who have smoked for
.15 years.
The evidence to support a direct effect

of smoking on tuberculin reactivity is
therefore poor.

SMOKING AND TUBERCULOSIS
As already mentioned, tuberculosis as a
disease is very different from tubercu-
lous infection, defined by a positive
tuberculin response. Several studies,
beginning in 1956, have linked smoking
with tuberculosis (reviewed by Maurya
et al11). As in a more recent study,12 the
possible confounding of socioeconomic
factors with both smoking and tuber-
culosis has only occasionally been
examined.13 Yu et al14 used binomial
regression to propose that heavy smok-
ing was associated with pulmonary
tuberculosis, although both were asso-
ciated with male sex and increasing age.
A case-control study matching street
based postcode, sex, date of birth, and
ethnic origin in Liverpool suggested that
smoking for .30 years was associated
with the development of all forms of
tuberculosis,15 but this was not signifi-
cant when corrected for the number of
factors examined. Prospective evalua-
tion of 42 655 individuals registered
with the Elderly Health Service in
Hong Kong noted that pulmonary
tuberculosis was more common in cur-
rent smokers than in ex-smokers, and
both were more common than in never
smokers. Cox proportional hazards ana-
lysis accounted for 18 potential con-
founding factors including alcohol and
several relating to socioeconomic status.
There was also a dose-response relation-
ship in current smokers for the devel-
opment of pulmonary tuberculosis. A
small study of contacts of sputum smear
positive tuberculosis compared 46 adult
patients with culture positive pulmon-
ary tuberculosis and 46 tuberculin
positive subjects without active tubercu-
losis.16 Adjusting the odds ratios for age,
sex, and socioeconomic status demon-
strated a dose-response relationship
between the number of cigarettes
smoked and the risk of active pulmon-
ary tuberculosis. A similar study from
the same group compared children in
contact with tuberculosis who later
developed the disease with those who
remained well during the period of
study despite a positive tuberculin skin
test.17 Passive smoking, as assessed from
the smoking history of the adult case
and from urinary cotinine levels, was
associated with a risk of developing
pulmonary tuberculosis (,80% primary
complex disease). One would have to
postulate that the infectious load,
related to coughing behaviour of the
smoking adult and using cotinine levels
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as a marker of proximity of the adult,
was significant if passive smoking itself
was not the significant factor in the
development of active tuberculosis. The
data are consistent with the hypotheses
that both a long duration of smoking
and current smoking might be related to
the development of active pulmonary
tuberculosis.

EFFECTS OF SMOKING AND THE
IMMUNE RESPONSE IN THE LUNG
The alveolar macrophage is probably the
first cell to ingest a tubercle bacillus
following infection. These cells suppress
the local immune response in order to
preserve lung architecture.18 Silicosis is
associated with an increased incidence
of tuberculosis, suggesting that proper
function of these cells is protective.
Smoking impairs the phagocytic func-
tion of alveolar macrophages.19 Both
smoking and tuberculosis induce
apoptosis of these cells.20 21 However,
smoking quadruples the number of
macrophages that can be harvested by
bronchial lavage.22 Cigarette smoke acti-
vates alveolar macrophages to produce a
local inflammatory response,23 but nico-
tine suppresses the antigen presentation
function to develop a specific immune
response.24 Chronic exposure to cigarette
smoke reduces expression of surface
proteins related to antigen presentation
by pulmonary macrophages.25 26 Others
have suggested that human alveolar
type II pneumocytes may be the first
port of call for the tubercle bacillus,27

but again this site of infection may
promote innate over specific immu-
nity.28 Smoking is not yet known to
affect the expression of significant sur-
face proteins in these cells.
Interleukin-18 (previously known as

interferon-c inducing factor) is reduced
in induced sputum from smokers.29

Nicotine impairs antigen receptor
mediated signal transduction30 and
induces T cell anergy.31 Natural killer
cell activity is also less and significantly
suppressed by alveolar macrophages
from bronchoalveolar lavage fluid of
smokers compared with non-smokers.32

CONCLUSION
The association of smoking with pul-
monary tuberculosis might be explained
by a reduced specific immunity and

possibly enhanced non-specific inflam-
matory response. Such a model would
predict that smoking during exposure to
tubercle bacilli is less likely to induce
delayed hypersensitivity but more likely
to produce disease. If correct, any
increase in tuberculin sensitivity asso-
ciated with smoking would have to be
explained by social behaviour rather
than the host response.

Thorax 2005;60:527–528.
doi: 10.1136/thx.2004.036012
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Neutrophils and asthma
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Is the neutrophil the key effector cell in
severe asthma?
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The importance of the neutrophil as the dominant inflammatory
cell in many of the non-atopic and more severe phenotypes of
asthma is now clear

E
osinophilic inflammation has long
been considered one of the most
distinctive pathological hallmarks

of asthma1 and features in many con-
temporary definitions of this disease. A
plethora of studies published from the
mid 1990s onwards have suggested,
however, that airway eosinophilia is
not a universal finding. This has fuelled
debate that discrete pathological pheno-
types of asthma may exist, with the
neutrophil—rather than the eosinophil—
dominating in certain circumstances.2–4

We present data that support the current
renewed interest in the neutrophil as a
primary driver of airways inflammation,
particularly in the most severe forms of
asthma. There are also some intriguing
data to suggest that, when the eosinophil
has been ‘‘red carded’’ and disappears
from the inflamed airway, the neutro-
phil may be drawn in and act as the
substitutegranulocyte.
The hypothesis that the eosinophil is

the key effector cell involved in the
pathogenesis of asthma has run into
trouble for several reasons: (1) eosino-
philic inflammation is present in the
airway lumen of only 50% of asthmatic
subjects;4 (2) even intense eosinophilic
inflammation, as occurs in eosinophilic
bronchitis, fails to induce asthma;5 (3)
many asthma exacerbations occur in
the absence of airway eosinophilia; (4)
specific anti-eosinophil strategies—for
example, anti-IL-5 and IL-12—are
poorly efficacious in vivo;6–8 and (5)
eosinophilic deficient mice have now
been engineered and this modification
has little impact on the airway pathol-
ogy induced in response to ovalbumin
sensitisation.9

A strong association has now been
established between neutrophilic
inflammation of the airways and severe
asthma,10–12 corticosteroid resistant
asthma,13–15 asthma exacerbations,2 noc-
turnal asthma,16 ‘‘asthma in smokers’’,17

occupational asthma,18 and ‘‘sudden
onset’’ fatal asthma.19 It is noteworthy
that, in the study by Little and collea-
gues12 conducted in a group of 59

asthmatics, forced expiratory volume in
1 second (FEV1) was inversely propor-
tional to neutrophil numbers. These
studies analysed neutrophil numbers in
all airway compartments including the
small airways and, where measured,
neutrophil numbers correlated well with
markers of neutrophil degranulation
which implies that these cells are also
activated.10 12 15 20–22 These findings are of
particular importance given the dispro-
portionate health costs associated with
treating patients with severe disease.23

These data set up a number of critical
questions—namely:

N What are the principal drivers of
neutrophil influx into asthmatic
airways?

N Can any of the existing asthma
treatments be implicated in airway
neutrophilia?

N How do we quantify neutrophil
trafficking in this disease?

N What are the most promising
therapeutic options to inhibit this
process?

It is now widely argued that certain
physical triggers including viruses, lipo-
polysaccharides, and ozone may be
more important inducers of airway
neutrophilia than any primary immu-
nological cause,21 24 and epithelial
derived IL-8 again stands out as one of
the most likely chemoattractants for
neutrophils.25 While in severe disease
eosinophils and neutrophils are usually
found together,13 cross sectional studies
suggest that neutrophils may gradually
replace eosinophils in proportion to the
severity and/or duration of the disease.10

This view is supported by the study
of Hauber and co-workers26 who took
bronchial wall and transbronchial
biopsy specimens from a group of 12
asthmatics before and after treatment
with HFA-flunisolide. They found a
dramatic fall in the number of IL-5
and eotaxin mRNA positive cells and
eosinophils in both the central and
peripheral airways and a corresponding

and equally marked rise in the number
of neutrophils at these sites. A similar
effect has been reported elsewhere27 28

and may reflect the widely cited capacity
of corticosteroids to induce eosinophil
apoptosis and phagocytic removal and
yet inhibit the same process in neutro-
phils.29–31 The possibility that the airway
neutrophilia develops as a primary
pathological response and hence repre-
sents a distinct inflammatory phenotype
is supported by studies which show that
this subgroup of patients is non-atopic
and has an impaired response to inhaled
corticosteroids.14 15

One intriguing insight into the poten-
tial high state of flux of neutrophils in
the airway wall is provided by the study
of Martin et al16 who performed bron-
chial lavage in patients with nocturnal
asthma and found a greater than three-
fold increase in the number of granulo-
cytes in bronchoalveolar lavage (BAL)
fluid samples at 04.00 hours compared
with 16.00 hours. This suggests a high
rate of turnover of these cells and
implies that neutrophils may have a
surprisingly short half life (,8 hours) in
asthmatic airways. The plasticity of the
airway neutrophilia is further supported
by experimental data obtained using an
equine model of asthma where complete
resolution of the neutrophilic airway
response occurred over a matter of a
few days following removal of the
mouldy hay challenge.32 In this model
the alveolar macrophages appeared to
make a significant contribution to the
clearance of apoptotic neutrophil cor-
pses from within the airway lumen.
Thus, if neutrophils do not reside within
the asthmatic airways for protracted
periods due to the presence of efficient
natural clearance mechanisms, strate-
gies designed to block influx—which
presumably occurs at the post capillary
venule level within the bronchial circu-
lation—may be highly efficacious.
Recent studies have revealed the pivotal
role of the enzyme phosphoinositide 3-
kinase in controlling neutrophil migra-
tion, activation and survival,33 34 and the
discovery of neutrophil specific isoforms
makes selective therapeutic targeting
with conventional small molecular
weight inhibitors a realistic prospect.
Certainly, the introduction of a Dp85
phosphoinositide 3-kinase construct
delivered using an HIV-TAT based pro-
tein delivery system in mice has a
dramatic protective effect on ovalbumin
induced airways inflammation.35

Thus, while the role of the eosinophil
in mediating airways inflammation in
mild and moderate atopic asthma
appears secure,36 37 the importance of
the neutrophil as perhaps the dominant
inflammatory cell in many of the non-
atopic and more severe phenotypes of
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asthma is now equally clear. Cor-
ticosteroids are highly effective in pro-
moting the resolution of eosinophilic
inflammation but far less so in neutro-
philic inflammation and, indeed, may
even facilitate the arrival and survival of
these cells in the airway wall.

Thorax 2005;60:529–530.
doi: 10.1136/thx.2005.043182
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