Sildenafil (Viagra) corrects ΔF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis

R L Dormer, C M Harris, Z Clark, M M C Pereira, I J M Doull, C Norez, F Becq, M A McPherson

Methods

Patients and cell sampling

Airway epithelial cells were obtained by nasal brushing from three non-CF individuals (age 9–22 years) and from six CF individuals (age 6 months to 16 years) undergoing flexible bronchoscopy under sedation as previously described. Most patients with cystic fibrosis (CF) have a ΔF508 mutation resulting in abnormal retention of mutant gene protein (ΔF508-CFTR) within the cell. This study was undertaken to investigate ΔF508-CFTR trafficking in native cells from patients with CF with the aim of discovering pharmacological agents that can move ΔF508-CFTR to its correct location in the apical cell membrane.

Method: Nasal epithelial cells were obtained by brushing from individuals with CF. CFTR location was determined using immunofluorescence and confocal imaging in untreated cells and cells treated with sildenafil. The effect of sildenafil treatment on CFTR chloride transport function was measured in CF15 cells using an iodide efflux assay.

Results: In most untreated CF cells ΔF508-CFTR was mislocalised within the cell at a site close to the nucleus. Exposure of cells to sildenafil [2 hours at 37°C] resulted in recruitment of ΔF508-CFTR to the apical membrane and the appearance of chloride transport activity. Sildenafil also increased ΔF508-CFTR trafficking in cells from individuals with CF with a single copy ΔF508 (ΔF508/4016ins) or with a newly described CF trafficking mutation (R1283M).

Conclusions: The findings provide proof of principle for sildenafil as a ΔF508-CFTR trafficking drug and give encouragement for future testing of sildenafil and related PDE5 inhibitors in patients with CF.

Measurement of chloride transport activity in CF15 cells

The SV40 transformed nasal epithelial cell line JME/CF15 from a patient with CF (ΔF508/ΔF508) was cultured in DMEM/F12 supplemented with adenine (180 μM), insulin (5 μg/ml), transferrin (5 μg/ml), hydrocortisone (1.1 μM), tri-iodothyronine (2 nM), epinephrine (5.5 μg/ml), 20% FCS, and L-glutamine (2 mM). Cells were plated onto 24-well dishes and grown to confluence in DMEM/F12 medium and the attached cells measured for chloride transport using an iodide efflux assay.

Conclusions: The findings provide proof of principle for sildenafil as a ΔF508-CFTR trafficking drug and give encouragement for future testing of sildenafil and related PDE5 inhibitors in patients with CF.
growth factor (1.64 nM) and 10% FCS. Chloride channel activity was assayed by measuring the rate of iodide efflux. CF15 cells were incubated for 2 hours at 37°C in the presence or absence of either sildenafil or MPB-91 (250 μM). Cells were then washed with efflux buffer containing (in mM): 137 NaCl, 4.4 KCl, 0.3 KH₂PO₄, 0.3 NaH₂PO₄, 4.2 NaHCO₃, 1.3 CaCl₂, 0.5 MgCl₂, 0.4 MgSO₄, 5.6 glucose and 10 HEPES, pH 7.5 and incubated in efflux buffer containing 1 μM KI and 1 μCi Na¹²⁵I/ml (NEN, Boston, MA, USA) for 2 hours at 37°C. Cells were then washed with efflux buffer. After 1 minute the buffer was removed and quickly replaced by 300 μl of the same buffer. The first four aliquots were used to establish a stable baseline in efflux buffer alone. Efflux buffer containing forskolin (10 μM) and genistein (30 μM) to stimulate CFTR activity was used for the remaining aliquots. At the end of the incubation the buffer was recovered and cells solubilised in 1 ml 1 N NaOH. The radioactivity was determined using a gamma counter (Cobra II, Packard Bell).

Analysis of data
For CFTR localisation up to 140 cells for each condition were examined, categorised as having a distinct CFTR location of either near nucleus or apical, and expressed as a percentage of all cells counted. Only ciliated tall columnar epithelial cells were counted as these can be readily differentiated from non-ciliated columnar epithelial cells and basal cells, even when F508-CFTR is localised close to the nucleus. For CFTR chloride transport activity the fraction of initial iodide efflux was calculated from ln(125Iₐ – 125Iₙ) / (tₐ – tₙ) where 125Iₐ is the intracellular 125I at time t, and t₁ and t₂ are successive time points. Curves were constructed by plotting k versus time. Relative rates were calculated and correspond to k_peak – k_basal (per minute). Concentration-response curves were constructed by plotting the percentage activation as a function of the concentration of sildenafil (100% corresponds to the maximum relative rate obtained at the highest concentration, i.e. 1.5 mM). Differences between treated and untreated cells were examined using the Student’s t test and p values of <0.05 were considered significant.

RESULTS
Mislocalisation of F508-CFTR in CF nasal cells
As in our previous studies, nasal epithelial cells obtained by brushing were polarised with cilia visible at the apical end of the cell that continued to beat for the 2 hour incubation before fixation. The nasal cells expressed cytokeratins typical of epithelial cells throughout the cell. In cells from non-CF individuals, wild type CFTR was located at the apical end of the cell (fig 1A). In untreated cells from non-CF individuals and from a CF individual with the genotype F508/4016ins, 60–70% of cells showed a near nuclear location of F508-CFTR with only 10% having F508-CFTR at the apical membrane (fig 1B and F). This is in agreement with our previous data on the location of CFTR in wild type, F508/ΔF508 and ΔF508/G551D cells.

Actions of sildenafil on F508-CFTR location
In ΔF508/ΔF508 cells treated with sildenafil (150 μM for 2 h at 37°C), a marked change in ΔF508-CFTR location was observed (fig 1C and F) with a significant decrease (p<0.05) in the percentage of cells having a near nuclear location and a significant increase (from 10% to 32%, p<0.05) in cells having ΔF508-CFTR at the apical membrane. CFTR was also relocated in cells with a single copy ΔF508 genotype (ΔF508/4016ins) following sildenafil treatment (fig 1F). The data indicate that CFTR trafficking drugs such as sildenafil will be potentially useful in all CF patients carrying

<table>
<thead>
<tr>
<th>Genotype</th>
<th>No treatment</th>
<th>Sildenafil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFTR location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Near nucleus</td>
<td>Apical</td>
</tr>
<tr>
<td>Wild type</td>
<td>9 (6)</td>
<td>71 (18)</td>
</tr>
<tr>
<td>ΔF508/ΔF508</td>
<td>65 (16)</td>
<td>10 (2)</td>
</tr>
<tr>
<td>ΔF508/4016ins</td>
<td>71</td>
<td>12</td>
</tr>
<tr>
<td>R1283M/E60X</td>
<td>89</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 1 Immunofluorescent images of non-CF and CF nasal epithelial cells showing that sildenafil corrects abnormal mutant CFTR location in CF cells. Cells were incubated for 2 hours at 37°C without sildenafil (A, B, D) or with 150 μM sildenafil (C, E). Images show CFTR immunofluorescence in green with the nucleus counterstained with propidium iodide in red. The results are representative of cells from (A) three non-CF individuals, (B, C) four ΔF508/ΔF508 CF individuals, and (D, E) one R1283M/E60X individual. They show that both ΔF508- and R1283M-CFTR are predominantly restricted within the cell to a distinct location adjacent to the nucleus (near nucleus) in untreated cells (B, D) whereas, after sildenafil treatment, many cells have an apical location of CFTR (C, E). (F) Cells were examined (up to 1.400 cells for each condition) and categorised as having a distinct CFTR location of either near nucleus or apical. The remainder of both untreated and treated cells showed a more even distribution of CFTR throughout the cell. Data are mean (SD). *p<0.05 for difference from no treatment.
a ΔF508 mutation. Although the concentration of sildenafil effective in increasing ΔF508-CFTR trafficking is higher than might be achieved in plasma (1 μM) following a single oral dose (100 mg) of Viagra (data from Pfizer: www.Viagra.com), nevertheless the data show proof of principle for investigating this relatively safe class of compounds for use in CF. Furthermore, the effect of sildenafil was selective in that the distinct locations of endoplasmic reticulum (p115), Golgi (GM130), and 20S proteasome proteins were not altered with sildenafil treatment (data not shown) and sildenafil (150 μM, 2 hours) had no effect on wild type CFTR location (fig 1A, F) in cells from non-CF individuals.

A new CF trafficking mutation

Cells from a CF individual heterozygous for a rare missense mutation, R1283M, and a stop mutation, E60X, were also examined (fig 1D–F). As for ΔF508 expressing
cells, the results (fig 1D, F) showed severe mislocalisation of CFTR with the majority of cells having mutant CFTR within the cell at a site close to the nucleus (near nuclear location). The defective location of this mutant CFTR was also markedly corrected by sildenafil (fig 1E, F) with the majority of treated cells showing an apical CFTR location. This is the first description of R1283M as a trafficking mutation and sildenafil was effective in correcting the defect. The results indicate that trafficking mutations in both the first and second nucleotide binding domains (NBD1 and NBD2) of CFTR are targets for sildenafil.

Effect of sildenafil on CFTR chloride transport activity in CF15 cells

The human airway epithelial CF cell line CF15 was used as a model to study CFTR dependent chloride transport. In untreated CF15 cells there was no stimulation of 35S efflux in response to the CFTR agonists forskolin and genistein (fig 2A) consistent with its ΔF_{508}/ΔF_{508} CF origin. However, when cells were treated for 2 hours at 37°C with sildenafil a significant stimulation by forskolin and genistein was recovered (fig 2A and B). The effect of sildenafil was similar to that of the potent trafficking drug MPB-91, although of lower magnitude. The concentration dependence of the effect of sildenafil treatment showed an EC$_{50}$ of 718 (1) μm (fig 2C, D). Thus, CF15 cells were less sensitive to the effect of sildenafil, requiring a higher concentration than native cells from CF patients to restore function. The effects of a range of Cl$^-$ channel blockers on the forskolin/genistein stimulated iodide efflux of sildenafil treated cells (1 mM for 2 hours at 37°C) was determined. The efflux was inhibited by glibenclamide and DPC but not by DIDS or calixarene, demonstrating that sildenafil had recruited functional ΔF_{508}-CFTR Cl$^-$ channels at the apical membrane. The results indicate that, like MPB-91, sildenafil was able to restore the chloride channel activity of ΔF_{508}-CFTR at 37°C. Immunolocalisation of ΔF_{508}-CFTR in CF15 cells indicated that, following treatment for 2 hours at 37°C with 1 mM sildenafil, ΔF_{508}-CFTR had moved from within the cell to an apical location (data not shown).

DISCUSSION

This study has shown, for the first time, a dramatic and rapid effect of the PDE5 inhibitor sildenafil in directing ΔF_{508}-CFTR to the apical membrane in native CF airway cells from patients with CF. The effect is comparable to that of wild-type CFTR. Thus, the present study showing recruitment of ΔF_{508}-CFTR to the apical membrane in native CF cells in response to the drug sildenafil, is a major step forward in restoring CFTR function. Although the concentration of sildenafil shown to traffic ΔF_{508}-CFTR in a CF cell line was higher than in native cells, sensitivities may vary between cell lines, isolated native cells, and in vivo, and this will form the basis of future studies. Nevertheless, the finding that sildenafil, a relatively safe drug already in clinical use, has a dramatic effect in increasing ΔF_{508}-CFTR trafficking will assist in the discovery of new derivatives and is a major advance towards developing a rational drug treatment aimed at repair or rescue of activity of the mutant CF gene protein. The present results indicate that an approach to drug therapy using CFTR trafficking drugs is likely to be applicable to the majority of patients with CF.

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Citation</th>
<th>Summary</th>
</tr>
</thead>
</table>

Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence-based journal available worldwide both as a paper version and on the internet. *Clinical Evidence* needs to recruit a number of new contributors. Contributors are healthcare professionals or epidemiologists with experience in evidence-based medicine and the ability to write in a concise and structured way.

Areas for which we are currently seeking authors:

- Child health: nocturnal enuresis
- Eye disorders: bacterial conjunctivitis
- Male health: prostate cancer (metastatic)
- Women’s health: pre-menstrual syndrome; pyelonephritis in non-pregnant women

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:

- Selecting from a validated, screened search (performed by in-house Information Specialists) epidemiologically sound studies for inclusion.
- Documenting your decisions about which studies to include on an inclusion and exclusion form, which we keep on file.
- Writing the text to a highly structured template (about 1500–3000 words), using evidence from the final studies chosen, within 8–10 weeks of receiving the literature search.
- Working with *Clinical Evidence* editors to ensure that the final text meets epidemiological and style standards.
- Updating the text every six months using any new, sound evidence that becomes available.

The *Clinical Evidence* in-house team will conduct the searches for contributors; your task is simply to filter out high quality studies and incorporate them in the existing text.

To expand the topic to include a new question about once every 12–18 months.

If you would like to become a contributor for *Clinical Evidence* or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Klara Brunnhuber (kbrunnhuber@bmjgroup.com).

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are healthcare professionals or epidemiologists with experience in evidence-based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and healthcare professionals, possibly with limited statistical knowledge). Topics are usually 1500–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for *Clinical Evidence*, please complete the peer review questionnaire at www.clinicalevidence.com or contact Klara Brunnhuber (kbrunnhuber@bmjgroup.com).
Sildenafil (Viagra) corrects ΔF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis

R L Dormer, C M Harris, Z Clark, M M C Pereira, I J M Doull, C Norez, F Becq and M A McPherson

Thorax 2005 60: 55-59
doi: 10.1136/thx.2003.019778

Updated information and services can be found at:
http://thorax.bmj.com/content/60/1/55

These include:

References
This article cites 13 articles, 3 of which you can access for free at:
http://thorax.bmj.com/content/60/1/55#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Cystic fibrosis (525)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/