Paradoxical reactions during tuberculosis treatment in patients with and without HIV co-infection

R A M Breen, C J Smith, H Bettinson, S Dart, B Bannister, M A Johnson, M C I Lipman

Background: It has been suggested that deterioration of tuberculosis (TB) during appropriate treatment, termed a paradoxical reaction (PR), is more common and severe in HIV positive individuals on highly active antiretroviral therapy (HAART).

Method: A study was undertaken to determine the frequency of PR and its associated features in a population of HIV+TB+ patients and a similar sized group of HIV−TB− individuals.

Results: PR occurred in 28% of 50 HIV+TB+ patients and 10% of 50 HIV−TB− patients. Disseminated TB was present in eight of 13 HIV+TB+ patients and four of five HIV−TB− patients with PR. In 28 HIV+TB+ patients starting HAART, PR was significantly associated with commencing HAART within 6 weeks of starting antituberculosis treatment (p=0.03) and was more common in those with disseminated TB (p=0.09). No association was found between development of PR and baseline CD4 count or CD4 response to HAART.

Conclusions: PR is common in HIV infected and uninfected individuals with TB. Early introduction of HAART and the presence of disseminated TB appear to be important in co-infected patients.
(one of whom experienced PR), four had died (three within a few days of starting TB treatment and one of non-Hodgkin’s lymphoma without adhering to antituberculosis treatment), in three cases patient records were unavailable for data analysis, and three patients were followed up at other centres. This left 50 HIV+TB+ individuals. Fifty consecutive HIV−TB+ patients fitting the inclusion criteria were identified for inclusion in the control group. The baseline characteristics of the two groups are shown in table 1. The two groups differed significantly with respect to both ethnicity (p<0.001) and the presence of disseminated TB (p = 0.001).

Paradoxical reactions were seen in 14 HIV+TB+ patients (28%; 95% CI 16 to 43) and five HIV−TB+ patients (10%; 95% CI 3 to 22). All cases of PR were in patients with culture confirmed TB sensitive to all first line antituberculosis drugs. PR occurred in patients of all ethnicities. The features associated with PR in the two groups are shown in table 2. In those with PR, disseminated TB was present in nine of 14 (65%) HIV+TB+ patients and four of five (80%) HIV−TB+ patients. The median time from starting TB treatment to PR was 33 days in the HIV+TB+ patients (range 3–173 days) and 87 days in the HIV−TB+ patients (range 23–157 days). However, in HIV+TB+ patients the median time between starting HAART and PR was only 11 days. Of the HIV+TB+ individuals with PR, all were either receiving HAART at the time of TB diagnosis or started it subsequent to this diagnosis. Two patients had episodes of PR before starting HAART, one of whom had a further episode after starting antiretroviral therapy.

Corticosteroids were prescribed in nine cases. The reasons for the prescription were severe systemic manifestations or prolonged duration of PR. Treatment led to an improvement in all cases in a median time of 3 days (range 1–7). Effective doses of prednisolone ranged from 10 to 80 mg daily. In all cases steroids were tailed off gradually, with PR recurring in three patients on their discontinuation. All responded again when steroids were restarted.

Serum levels of C-reactive protein (CRP), erythrocyte sedimentation rate, albumin, lactate dehydrogenase (LDH), and haemoglobin as markers of systemic inflammation were obtained in HIV+TB+ patients at the time of TB diagnosis. No significant differences in these parameters were observed when comparing patients who subsequently developed PR with those who did not (data not shown). At the time of PR, CRP levels were increased in all 10 in whom they were measured and LDH levels were increased in five of seven in whom they were measured. However, only in two cases had these levels risen in comparison with the levels at TB diagnosis.

Of the 50 HIV+TB+ patients studied the median CD4 count at the time of TB diagnosis was 119 cells/µl (range 2–831) and HIV viral load was 5.5 log copies/ml (range 1.69–5.9). Nine did not have HAART during treatment for TB, 13 took HAART both before and after the diagnosis of TB, and 28 received HAART subsequent to the diagnosis of TB.

The 28 HIV+TB+ patients who received HAART only after starting antituberculosis treatment were analysed separately. The data for this group are shown in table 3. Eight of the 28 patients (29%) had PR. Their median CD4 count at TB diagnosis was 119 cells/µl (range 2–831) and HIV viral load was 5.5 log copies/ml (range 1.69–5.9). No association was found between PR and baseline CD4 count or CD4 response on HAART. In this group PR was significantly associated with starting HAART within 6 weeks of TB diagnosis (p = 0.03). PR was more common in those with disseminated disease (6/13 with dissemination v 2/15 without dissemination; p = 0.09) and viral load suppression to <400 copies/ml within 6 months (p = 0.3). However, none of these reached statistical significance.

DISCUSSION

Our results, based on a population of patients with a range of clinical disease, suggest that PR during treatment for TB is
common in both HIV infected and uninfected individuals. The observed frequency of 28% in our HIV positive patients is lower than some groups have reported since the introduction of HAART, while our rate of 10% in HIV negative patients is higher than the rate of 2% reported by Narita et al in their HIV negative comparison group. We believe these differences may be due to patient selection. We have investigated a typical mixed inpatient and outpatient study population with a range of TB presentations. All patients received daily self-administered treatment and, although not formally assessed in this study, adherence to treatment in our cohort is generally excellent.

The main differences between our HIV positive and HIV negative groups were with respect to ethnicity and the presence of disseminated TB. The former reflects the demographic characteristics in our practice as a whole. We observed PR in all ethnic groups with no difference in frequency according to race, although the sample size for this analysis was small. However, there have been no reports of ethnic differences in the occurrence of PR and we do not believe that ethnicity explains the increased frequency in the HIV positive group.

We and others have shown a strong association between the use of HAART and PR. The underlying mechanism for this is unclear. Our data suggest that PR is independent of both baseline CD4 count and HAART mediated recovery of CD4 cells as measured in peripheral blood. However, these may not accurately reflect local immune responses in, for example, the lung which are probably more relevant. This may not accurately reflect local immune responses in, for example, the lung which are probably more relevant.11 This might explain the reported slow recovery of specific T cell responses in blood from patients starting HAART and PR creates a dilemma for the clinician treating TB/HIV co-infection. Against this must be balanced the risk of HAART and PR. The underlying mechanism for HAART.12 13 There is a suggestion that a rapid reduction in HIV plasma viral load may be associated with PR, as found by Navas et al. 10

In practice, the association between early initiation of HAART and PR creates a dilemma for the clinician treating TB/HIV co-infection. Against this must be balanced the risk of further opportunistic infections if HAART is delayed. A large study of co-infected patients showed that four of 188 had a further AIDS defining illness (ADI) within the first 2 months of TB treatment. Those at particular risk of further ADI included patients with a CD4 count below 100 cells/μl and patients not receiving HAART. Although our study could not investigate the reasons which lead physicians to decide when to prescribe HAART after TB treatment and hence we cannot rule out confounding factors, our data suggest that delaying HAART to avoid PR may be advisable in the presence of disseminated TB but not necessary in those with low CD4 counts alone. A flaw in this strategy may be the difficulty in accurately assessing the TB burden in many patients with advanced immunosuppression.

In HIV negative patients admitted for treatment of TB, restoration of skin test responses to PPD after 2 weeks of antituberculosis treatment have been reported. This has been ascribed to reversal of immunosuppression due to TB itself. However, improved nutritional status and alcohol cessation, which might be most marked in those admitted for treatment, have been shown to affect cell mediated immunity and thus may also play an important part.

Disseminated TB—which is seen more frequently in HIV infected TB patients—was associated with PR, although this did not reach statistical significance. This may not only reflect the importance of immune status, as discussed above, but also suggests that overall mycobacterial load can influence the development of PR. Campbell and Dyson proposed that rapid killing of bacilli by effective antituberculous treatment can cause the release of large amounts of tuberculoprotein and other cell wall products. The ability of such materials to elicit a severe and potentially fatal inflammatory response was described first by Koch himself. It is logical to assume that the overall inflammatory response to M tuberculosis reflects both the number and function of appropriate immune cells and the amount of antigen that they encounter. The severity and frequency of PR would therefore be expected to increase if disseminated or extensive single organ disease was present.

We have shown that PR is a common phenomenon during TB treatment in a combined inpatient and outpatient population, regardless of HIV antibody status. However, it is seen more frequently in co-infected patients receiving HAART. The reasons for this remain unclear, although the timing of HAART initiation in relation to TB diagnosis appears to be important, as does the presence of disseminated disease. Our study is limited by its retrospective nature and relatively small size. Results that do not achieve statistical significance at the 5% level may become significant with a larger sample. We believe that this warrants further prospective, clinical, and laboratory investigation.

Table 3 Factors associated with paradoxical reaction (PR) in patients starting HAART after commencing antituberculosis treatment

<table>
<thead>
<tr>
<th>No (%) with PR</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4 count at starting HAART</td>
<td></td>
</tr>
<tr>
<td>>50 cells/mm³</td>
<td>4/17 (24%)</td>
</tr>
<tr>
<td><50 cells/mm³</td>
<td>4/11 (36%)</td>
</tr>
<tr>
<td>Viral load at starting HAART</td>
<td></td>
</tr>
<tr>
<td><5.5 log copies/ml</td>
<td>3/14 (21%)</td>
</tr>
<tr>
<td>>5.5 log copies/ml</td>
<td>5/14 (36%)</td>
</tr>
<tr>
<td>Disseminated TB</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2/15 (13%)</td>
</tr>
<tr>
<td>Yes</td>
<td>6/13 (46%)</td>
</tr>
<tr>
<td>CD4 cell response to HAART</td>
<td></td>
</tr>
<tr>
<td>>100 cells/mm³ increase</td>
<td>6/18 (33%)</td>
</tr>
<tr>
<td><100 cells/mm³ increase</td>
<td>2/10 (20%)</td>
</tr>
<tr>
<td>Viral load (VL) response to HAART</td>
<td></td>
</tr>
<tr>
<td>Achieved VL <400 copies/ml</td>
<td>8/24 (33%)</td>
</tr>
<tr>
<td>Did not achieve VL <400 copies/ml</td>
<td>0/4 (0%)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Black African</td>
<td>5/16 (31%)</td>
</tr>
<tr>
<td>Other</td>
<td>3/12 (25%)</td>
</tr>
<tr>
<td>Time from TB treatment to HAART</td>
<td></td>
</tr>
<tr>
<td><6 weeks</td>
<td>7/13 (54%)</td>
</tr>
<tr>
<td>6 weeks–6 months</td>
<td>1/11 (9%)</td>
</tr>
<tr>
<td>>6 months</td>
<td>0/4 (0%)</td>
</tr>
</tbody>
</table>

*Fisher’s exact test.

REFERENCES

Paradoxical reactions during tuberculosis treatment in patients with and without HIV co-infection

R A M Breen, C J Smith, H Bettinson, S Dart, B Bannister, M A Johnson and M C I Lipman

Thorax 2004 59: 704-707
doi: 10.1136/thx.2003.019224

Updated information and services can be found at:
http://thorax.bmj.com/content/59/8/704

These include:

References
This article cites 13 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/59/8/704#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Drugs: infectious diseases (968)
HIV/AIDS (194)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/