Asthma prevalence in adults: good news?
S K Weiland, N Pearce

Time trends in asthma prevalence may have levelled off

ew diseases have a relation to age which is as fascinating and complex as for asthma. It is a chronic but not necessarily lifelong condition. The incidence of asthma and wheezing illness peaks in very early childhood, but new incident cases occur throughout life.1–4 In many affected subjects, particularly children, it disappears after some time.2–4 However, in a substantial proportion of cases which have apparently lost the disease it will come back, often after many years.3,4 Another intriguing feature is that the sex ratio changes with age. Most studies show that boys are affected more often by wheezing illnesses than girls, but this sex ratio usually reverses during or shortly after puberty, partly due to a higher incidence in females.1–9

Most studies investigating the relationship between age and asthma have been performed in infants and children and, in fact, different age related phenotypes in childhood have been described which seem to have distinct causes and consequences.2–10 Information on the relation to age in adults is scarce and has often been based on routine data or cross sectional studies.1,5

In this issue of Thorax Chinn and colleagues report the findings of phase II of the European Community Respiratory Health Survey (ECRHS) which involved following more than 11 000 randomly selected adults (participants in ECRHS phase I stage 2 at which time they were aged 20–44 years) for a period of 5–11 years.11 The investigators used the same standardised questionnaires at the start and end of the observation period, asking about the occurrence and severity of respiratory symptoms in the 12 months before the survey. The study is unique because of its international approach which included 29 study centres from 14 countries. Consistency of findings across countries argues strongly for the validity of the results.

Nevertheless, there are several methodological issues that should be considered before accepting the findings as valid. In particular, measuring asthma in populations is no easy task.12 There is no single simple instrument by which cases can be identified. Instead, there is a whole battery of different measures, all of which have advantages and disadvantages. Chinn et al12 report data collected by standardised symptom based questionnaires which are considered to be the standard method for measuring the prevalence of asthma in epidemiological studies.12 However, since these do not measure the prevalence of asthma in individuals with complete accuracy, changes within individuals between repeated surveys may reflect measurement error rather than genuine changes in morbidity. Chinn et al12 therefore report the “net change” in symptom status for each centre rather than reporting separately the rate at which previously disease free subjects became symptomatic (incidence) and the rate at which previously diseased subjects became asymptomatic (remission). While this approach is perhaps regrettable from a clinical point of view, it is methodologically valid and provides findings that are of considerable interest.

The study showed no increase in the 12 month period prevalence of wheeze and more severe asthma symptoms during the follow up period which averaged about 8 years. However, there was a significant increase in the reported 12 month period prevalence of attacks, labelled as “asthma attacks”, and in the point prevalence of asthma medication use and nasal allergies.

How can these apparently contradictory patterns be reconciled? An increased prevalence of asthma attacks and medication use could be due to an increase in the prevalence of severe asthma, in recognition of symptoms by patients, in diagnostic labelling of wheezing illness by physicians, or in medical treatment of the condition. Each of these, in turn, could reflect temporal trends (changes over time) or age effects (changes with increasing age). However, Chinn et al also measured the prevalence of wheeze and severe asthma symptoms and these did not increase. It is therefore most likely that the observed increases reflect changes in diagnostic labelling and/or medical treatment for mild and/or moderate asthma.

Although the study by Chinn et al12 does not allow to disentangle potential age and period effects, it is interesting to review the current evidence for time trends in asthma prevalence. An increase in the prevalence of asthma and allergies in the late 20th century is generally accepted. While most studies reported increases in the prevalence of symptoms and diagnoses (and these are mostly in children), these observations are supported by studies which also included physiological markers.13 Recently, however, several studies have suggested that this increase may have come to an end—at least in some areas.

A study in adults over the period from 1972 to 1998 still observed increases in the prevalence of asthma symptoms and diagnoses which was more pronounced among those aged less than 40 years.14 Two other studies on adults examining time trends during the 1990s, however, found no increase in the prevalence of either asthma symptoms15 or bronchial hyperresponsiveness,16 but an increase in the prevalence of reported asthma diagnoses. An investigation of Swiss adolescents observed no further increase in the prevalence of asthma symptoms and allergic sensitisation in the late 1990s.17 Finally, Anderson et al18 in a large survey in the UK, actually found a decrease in the prevalence of symptoms of asthma, hay fever, and eczema in 12–14 year olds between 1995 and 2002. During the same period there was an increase in the lifetime prevalence of diagnoses of the three disease entities under investigation. Robertson et al19 reported a similar reduction in the prevalence of asthma in children in Melbourne during 1993–2004. Thus, there is evidence from several countries that time trends in the burden from asthma may have levelled off—in some countries even reversed—while the rate of reported diagnoses continued to increase.

It is important to note, however, that these reports come mostly from high income countries with prevalence rates ranking among the highest in the world.20 The global burden of asthma, however, will be determined to a large extent also by what happens in low income countries. In this respect, the upcoming results of phase III of the International Study of Asthma and Allergies in Childhood (ISAAC), which has studied recent time trends in about 100 centres worldwide (including those of Anderson et al18 and Robertson et al19), will be of particular interest.21 If, in fact, time trends in asthma prevalence have levelled off, it is not clear which factors have determined this change. It is possible that the increase in asthma prevalence has reached a natural plateau in English speaking countries in which virtually all the “susceptibles” may have developed the
condition. However, this speculation would not explain the apparent decrease in some countries. In this regard, it is likely that improved medical treatment, especially the use of inhaled steroids, has contributed. It has been argued that many patients do not benefit from new treatment because their disease is not diagnosed and/or treated adequately. In this sense, the increased prevalence of diagnosed asthma reported by Chinn et al, in the absence of an increased symptom prevalence, could also be a reflection that medical care of asthma patients has changed for the better. Whatever the explanation, the findings of Chinn et al are in line with those of other recent studies and may, in fact, be good news.

doi: 10.1136/thx.2004.026302

Authors’ affiliations
S K Weiland, Department of Epidemiology, University of Ulm, Ulm, Germany
N Pearce, Centre for Public Health Research, Research School of Public Health, Massey University Wellington Campus, New Zealand

Correspondence to: Prof Dr med S K Weiland, MSc, Department of Epidemiology, University of Ulm, Helmholtzstr. 22, 89081 Ulm, Germany; stephan.weiland@medizin.uni-ulm.de

The Centre for Public Health Research is supported by a Programme Grant from the Health Research Council of New Zealand.

REFERENCES

Oxygen in COPD

Short burst oxygen therapy for relief of breathlessness in COPD

C M Roberts

More evidence against the effect of short burst oxygen therapy, but doubts remain

In this issue of Thorax Stevenson and Calverley provide more evidence for a lack of effect of short burst oxygen therapy in the relief of dyspnoea following exercise in patients with chronic obstructive pulmonary disease (COPD). This study follows other recent publications that appear to draw the same conclusion. Despite this mounting evidence, oxygen cylinders for “as needed” use are still frequently prescribed at great cost. Oxygen used in this way is often perceived as life saving by patients, but can this continuing practice of short burst oxygen use for COPD patients be justified in the light of the emerging evidence?

Oxygen therapy for the management of chronic COPD comes in various forms. Long term oxygen therapy (LTOT) prescribing has an accepted evidence base and any patient considered for short burst treatment should first have undergone an assessment for LTOT. Ambulatory oxygen has been shown to have some beneficial effect in some patients researched in a number of studies that demonstrate some concordance. It is a continuing challenge to the respiratory establishment, however, that the form of oxygen most commonly prescribed in the UK lacks such an agreed evidence base. Short burst oxygen use for the palliation of dyspnoea is fairly widespread among patients with severe COPD. Anecdotally, it is believed by them and often given at their request by respiratory specialists and general practitioners when other options have been exhausted. When it is given there is some evidence that it is used inconsistently—either before or after exercise—and that the delivery mode is non-standardised with both face masks and nasal canulae being used with flow rates set usually at 2 or 4 L/min, but often left to the discretion of the non-specialist or patient to determine.

This sounds like a mess that needs sorting out and it is notable that the initial British Thoracic Society, American Thoracic Society, and European Respiratory Society guidelines for COPD had little to say on this subject. More disappointingly, the contemporary GOLD document virtually ignores short burst oxygen and recommendations from the 2004 NICE guideline consist of rather vague statements based on levels C and D evidence. Although this
perceived paucity of an historical evidence base has previously precluded authoritative guidance, a number of contemporary studies examining the effectiveness of short burst oxygen therapy are now available for us to analyse. The problem for the jobbing clinician is that the available evidence has yet to be synthesised into a whole and, practically, this is a challenging exercise for a number of reasons evident on review of the literature.

REVIEW OF THE EVIDENCE

Perhaps the best evidence for a positive effect of short burst oxygen therapy in exercise for subjects with COPD comes from a single paper published some years ago. Woodcock et al showed that pre-dosing with oxygen for as little as 5 minutes at a rate of 4 l/min using nasal cannulae before both a submaximal treadmill test and a 6 minute walk test increased walking distance compared with administered air in COPD subjects. Dyspnoea, however, was reduced only for the shorter treadmill test and not for the 6 minute test. The subjects were not severely hypoxic at rest and real time oxygen saturation was not measured.

Two further papers provide borderline positive findings. Evans et al studied 19 hypoxic subjects with severe COPD of mean age 65 years. Subjects undertook three simulated step tests breathing via a face mask, 67% oxygen, 10 l/min mixture was administered for 5 minutes at a rate of 2 l/min via nasal cannulae prior to a treadmill exercise test in 20 subjects with COPD (mean FEV1 31% predicted). No effect was observed on the dyspnoea score during exercise. Rhind et al presented similar findings in 12 subjects with COPD.

More recently, Nandi et al reported the effect of both pre and postdosing for 10 minutes with either 28% oxygen by face mask or compressed air at a rate of 4 l/min and also post exercise dosing with similarly blinded gas mixtures. Six minute walk tests were undertaken and oxygen was found to have no benefit compared with compressed air in terms of relief of dyspnoea in either arm of the study in the 34 subjects included (mean FEV1 34% predicted). Of all the subjects who had significant oxygen desaturation. In a not dissimilar study Lewis et al also used the 6 minute walk test to study 22 patients with COPD (mean FEV1 34% predicted) without resting hypoxia but most of whom desaturated on exercise. In this study the gas mixture was administered for 5 minutes at a flow rate of 2 l/min via nasal cannulae. No effect was observed on the dyspnoea score with either pre or post dosing with oxygen compared with compressed air.

In contrast to these at best equivocal and conflicting results, there is a clearer—although by no means perfect—consensus on the use of ambulatory oxygen therapy as an adjunct to reducing dyspnoea and improving exercise tolerance. A number of studies have reported benefits, although not in all subjects. The mechanism for this apparent reduction in dyspnoea is postulated as the reduced work of breathing when hypoxaemia is prevented or reduced in severity. So why is oxygen helpful in the ambulatory setting but of less value following exercise? One key element of the increased work of breathing in patients with limited expiratory flow is the development of dynamic hyperinflation.

STUDY BY STEVENSON AND CALVERLEY

It is argued by Stevenson and Calverley in this issue of Thorax that a reduction in dynamic hyperinflation may hold the key to the successful identification of those subjects who will benefit from oxygen and, specifically in this study, those using it as a short burst dosing intervention following exercise.

Stevenson and Calverley administered oxygen at an inspired oxygen fraction of 0.4 or air at a similar flow rate (10 l/min) to 18 moderately severe COPD patients (FEV1 40% predicted) after a standardised but insignificant exercise. In this study subjects exercised both “instrumented” in a full cardiorespiratory exercise test breathing via a mouthpiece and “non-instrumented” breathing from a face mask. The hypothesis tested was that oxygen administration should reduce the work of breathing and aid resolution of dynamic hyperinflation by reducing tidal volume breathing and allowing an increased expired air time. Administration of oxygen after exercise was associated with a reduced ventilatory effort and more rapid resolution of dynamic hyperinflation and a significant reduction in dyspnoea. The findings were essentially negative in that, although observed changes occurred, these did not produce a significant reduction in breathlessness as measured by a Borg scale when oxygen administration was compared with that of air. A significant difference in recovery time of dyspnoea was noted, however, between the instrumented mouthpiece tests (11.38 (1.49) minutes) and those when face masks alone were used (7.94 (1.12) minutes).

The study by Stevenson and Calverley adds to the evidence that there is no single easily measured mechanism by which oxygen reduces dyspnoea after exercise, and that the mechanisms which may operate to prevent dyspnoea when oxygen is administered during exercise may not be the same as those which may operate in influencing dyspnoea after exercise. The authors point out that the reduced recovery time observed in the subjects when receiving
oxygen by face mask may reflect stimulation of facial receptors that could reduce dyspnoea perception.21 Even this suggestion is contentious in the context of clinical use of short burst oxygen after exercise. The best evidence for a positive effect of oxygen was derived from a study using nasal cannulae rather than masks,22 and a recent study examining the effect of mask versus room air breathing concluded that any apparent benefit is an order effect of exercise rather than a result of either oxygen or delivery apparatus.23

CLINICAL IMPLICATIONS
The difficulty for those trying to develop guidelines in this arena is the disparate nature of these studies. In some the study end points were dyspnoea and in others exercise tolerance; the nature and duration of exercise was different; the inspired oxygen tensions, flow rates and delivery systems were not standardised; and perhaps most challenging of all were the settings for the studies. Finally, as clinicians we must ask practical questions—are the study subjects included the ones we would consider recommending for short burst oxygen therapy and are the study circumstances those in which patients commonly use this form of oxygen?

What we may deduce so far is that short burst oxygen therapy either before or after exercise probably does not benefit the majority of patients with moderately severe COPD who exercise for more than a very short period of time. Before comprehensive recommendations can be made we still require specific studies to re-evaluate the work of Swinburn11 and Killen12 in subjects at rest and after very short episodes of exertion set in the circumstances of everyday living.


doi: 10.1136/thx.2003.017301

Correspondence to: Dr C M Roberts, Department of Respiratory Medicine, Whips Cross University Hospital, London E11 1NR; Michael.Roberts@whippsc.nhs.uk

REFERENCES

Regulatory T cells and asthma and allergy

Regulation: the art of control?
Regulatory T cells and asthma and allergy

D S Robinson

A better understanding of the immunology of regulation may allow preventive or disease modifying treatment for asthma and other respiratory diseases

Much is currently made of the control of asthma in therapeutic guidelines. Both the British guidelines and the Global Initiative for Asthma (GINA) define measures of control of the disease, and recent studies have defined strategies for control using available anti-inflammatory and bronchodilator therapy such as inhaled steroids and long acting β2 agonists.1 2 However, currently available treatments suppress inflammation but do not modify the underlying immunological pre-disposition to the disease.

Asthma is widely recognised as an inflammatory airway disease driven by activation of Th2-type T lymphocytes in both atopic allergic and intrinsic or non-allergic forms.3 4 Recent advances in our understanding of the control of the immunological process have identified regulatory suppressive T cells which can prevent activation of self-reactive or pathological T cells in autoimmune or infectious disease models.5 6 Does this understanding of immune regulation hold the prospect of disease control or even prevention for asthma?

MECHANISM OF ACTION
The interest of immunologists in actively suppressive T cells was re-awoken by the finding by Sakaguchi and co-workers that deletion of CD4+CD25+ T lymphocytes from mice led to development of autoimmune
pathology which could be prevented by re-introduction of these cells. Such CD4+CD25+ regulatory T cells were active in many disease models and could reverse established inflammatory diseases such as colitis. These cells were shown to arise by high affinity selection in the thymus and are thought to form a “naturally occurring” regulatory population that is an important part of maintenance of tolerance or non-reactivity of the immune system against itself. Shevach and co-workers established an in vitro system and showed that CD4+CD25+ T cells failed to proliferate to polyclonal or antigenic stimulation in culture; furthermore, they could suppress proliferation and cytokine production by CD4+CD25− T cells. This system showed that human peripheral blood CD4+CD25+ T cells also represent a non-proliferating suppressive T cell population. The mechanism of suppression by CD4+CD25+ regulatory T cells remains unclear: in some in vivo models suppression is dependent on the immunosuppressive cytokines interleukin 10 (IL-10) and transforming growth factor β (TGFβ), whereas suppressive activity in vitro is not affected by the absence or neutralisation of these factors. In vitro suppression by both mouse and human CD4+CD25+ T cells requires contact between regulating and responding cells and is partly dependent on negative co-stimulatory signals including CTLA4 and PD-1. As CD25 is the alpha chain of the IL-2 receptor and these cells do not make their own IL-2, one possibility is that regulation occurs through competition for this and other T cell growth factors as well as by competition for “space” in repopulation experiments in lymphopenic mice. Since CD4+CD25+ T cells could regulate non-T cell dependent colitis in a mouse model, such interactions with responder T cells cannot be the sole mode of suppression and regulatory T cells are likely to influence cells of the innate immune system including dendritic cells. Can CD4+CD25+ T cells inhibit activation of Th2 cells in animal models or in vitro?

**Animal models**

Animal models of allergic airway sensitisation have been useful in defining potential immunological mechanisms in asthma and allergic disease. However, there are few data on CD4+CD25+ T cell regulation of mouse Th2 airway inflammation and airway hyperresponsiveness. When CD4+CD25+ T cells were depleted in one model airway, inflammation actually decreased. This may be because CD25 is also a marker of recently activated T cells or memory effector cells, so both regulators and effectors had been removed. However, co-transfer of ex vivo expanded CD4+CD25+ ovalbumin specific T cells together with Th2 cells had no effect on subsequent inhaled ovalbumin challenge in another mouse model, and ovalbumin specific airway CD4+CD25+ T cells in another complex double transgenic model reduced airway inflammation but not airway hyperresponsiveness in response to inhaled challenge.

**In vitro experiments**

Human peripheral blood CD4+CD25+ T cells were shown to be suppressive in allergen stimulated cultures. We recently compared such suppressive activity in allergen stimulated in vitro cultures of CD4+CD25− and CD4+CD25+ T cells from non-atopic and atopic volunteers. CD4+CD25+ T cells suppressed proliferation and cytokine production by CD4+CD25− from non-atopic subjects almost completely, but this suppressive activity was significantly reduced in cultures from atopic volunteers, particularly when blood was taken from hay fever sufferers during the height of the pollen season. Interestingly, removal of CD4+CD25+ T cells from peripheral blood of non-atopic individuals revealed proliferation and Th2 cytokine production to allergen stimulation which was similar to that from atopic volunteers. These data led to the suggestion that Th2 responses to allergen in non-atopic subjects may be actively suppressed by CD4+CD25+ T cells, and that this regulation is either deficient in atopic subjects or overcome by allergen exposure. Clearly, further work is required to determine whether such regulatory cells occur in the airway or are reduced in asthma.

Although CD4+CD25+ regulatory T cells have been found in lung tissue around lung cancers, phenotypic identification of regulatory T cells is hampered by the lack of a specific cell marker. One important advance in understanding the regulatory function of these cells came from studies of a rare human immunodeficiency (IPEX) which results in autoimmune and allergic disease and its murine counterpart, the “scurfy” mouse strain: both were shown to result from mutation of a transcription factor termed FoxP3. Furthermore, in elegant experiments FoxP3 knockout mice were shown to lack CD4+CD25+ regulatory T cells, whereas ectopic expression of the transcription factor by retroviral transfer into CD4+CD25− T cells rendered these regulatory. How FoxP3 influences suppression is unclear, and although we and others have confirmed relative overexpression of mRNA for FoxP3 by human CD4+CD25+ T cells, this may not represent a specific marker for this cell type nor does it appear to be active in suppression by other regulatory T cell subtypes. Recently, neuropilin-1 was identified as a potential surface marker for mouse CD4+CD25+ T cells. It is therefore possible that atopy (and asthma) result from a failure to suppress inappropriate Th2 responses to environmental allergens. What factors determine the balance between regulatory and potentially immunopathological Th2 responses to allergen exposure in the developing (or mature) immune system? Increasing interest has focused on the mode of activation of the innate immune system (including airway dendritic cells) as a major determinant of the type of T cell response to antigen exposure. As well as the route, dose and frequency of antigen exposure, co-activation of pattern recognition receptors such as Toll-like receptors (TLR) or co-stimulatory molecules act as important determinants of T cell activation. It is possible that relative levels of activation of these receptors may be relevant—for example, low dose bacterial lipopolysaccharide (LPS) acting through TLR4 favours Th2 development whereas higher doses drive Th1 development and exposure of dendritic cells to LPS can overcome regulation by CD4+CD25+ T cells. Similarly, the balance of co-stimulation may be important as ICOS co-stimulation is active in supporting Th2 responses but can also drive development of IL-10 producing regulatory T cells in the mouse lung. Such considerations may provide an immunological basis for the hygiene hypothesis for the increasing prevalence of asthma and allergic disease: this may represent a failure of development of appropriate regulatory responses due to lack of appropriate TLR or co-stimulator activation at the time of allergen exposure. It may also underlie some of the genetic associations of asthma with TLR2 or CD14 (an LPS receptor) polymorphisms. It is noteworthy that high exposure to cat allergen reduces the risk of IgE sensitisation and induces an IL-10 predominant “modified Th2” response which may represent regulation. However, such a protective effect of high level allergen exposure is not reported for house dust mite. Much more work is required before exposure to allergen or other factors can be manipulated to prevent allergic sensitisation.

**CLINICAL IMPLICATIONS**

How might regulatory T cells be manipulated or induced for treatment or prevention of asthma? Although CD4+CD25+ T cells do not proliferate in vitro in many systems, it has recently been shown that human cells can be

---

*www.thoraxjnl.com*
expanded in response to antigen and CD4+CD25+ T cells do proliferate upon in vivo transfer to mice. It is suggested that suppression by CD4+CD25+ T cells is not antigen specific once these cells are activated, and it might be feasible to transfer cells expanded ex vivo. However, such cell therapy would be complex and potentially hazardous. Another approach is to induce a regulatory population in vivo. Such “adaptive” regulatory T cells have been described in vivo in mice and in vitro in mice and humans and include a range of subtypes that are distinct from the “naturally occurring” CD4+CD25+ T cells. For example, IL-10 producing regulatory T cells were derived in vitro from both human and mouse T cells by activation in the presence of dexamethasone and vitamin D3 (which inhibit development of Th2 and Th1 cells, respectively). This raises the possibility of inducing similar cells by in vivo allergen exposure in the face of immunosuppressive agents. We recently showed that in vitro exposure of CD4+CD25+ T cells to corticosteroids increased their suppressive activity in subsequent allergen stimulated cultures through increased IL-10 production. IL-10 producing regulatory T cell clones were produced by activation in the presence of IL-10: these T cell prevented IgE and Th2 expansion in a mouse model of allergic airways disease but also produced both IL-5 and interferon γ. Animal models of tolerance involving nasal or oral delivery of protein or peptide also induce regulatory T cell populations—either IL-10 producing T cells or Th3 cells making TGFβ. For many years allergen immunotherapy has been used to control allergic diseases including rhinitis and seasonal asthma, and this treatment produces long lasting clinical effects but no reduction in Th2 responses to allergen exposure. Allergen immunotherapy also induces a predominant IL-10 response to allergen, and this may be associated with development of regulatory T cells which were CD4+CD25+. Whether this phenotype relates to CD4+CD25+ regulatory T cells or represents activation by allergen remains to be determined, although no difference was found in the suppressive activity of peripheral blood CD4+CD25+ T cells from hay fever patients who had or had not been treated with immunotherapy. Allergen immunotherapy is not used for asthma treatment in the UK because of the risk of anaphylaxis, but a number of modifications may allow its development for asthma. One approach is to break the allergen into short peptides which retain T cell reactivity but which no longer crosslink IgE (so it will not trigger anaphylaxis).

This approach shows some efficacy in reducing airway hyperresponsiveness and reduced peripheral blood Th2 responses to allergen, again with an increase in IL-10 production. We recently showed that reduced CD4+ T cell responses to cat allergen following peptide therapy were not associated with changes in suppression by blood CD4+CD25+ T cells, so this type of immunotherapy may induce other regulatory T cell subtypes (or work in another fashion). Other approaches are a combination of immunotherapy with adjuvants such as CpG oligonucleotides (which activate TLR9) or mycobacterial products. Clearly, it will be important to establish both safety and bystander suppression of other allergens or antigens before these approaches can be used clinically. However, it is interesting that allergen immunotherapy reduced the development of both new allergen sensitisation and of asthma in trials in children with allergic rhinitis, which suggests that immune modulation may hold the potential to prevent asthma.

CONCLUSIONS

Current data support the suggestion that regulatory T cells may be important in preventing allergic sensitisation in non-allergic individuals. If the balance between regulation and activation of Th2 T cells can be manipulated, this holds great promise for treatment and prevention of asthma. Regulatory T cells may also be important for a number of other lung diseases: CD4+CD25+ T cells isolated from lung tissue around lung cancers suppressed anti-tumour responses and temporary inactivation of such suppression may be useful for treatment. It is also possible that airway inflammation in chronic obstructive pulmonary disease results from a failure to suppress T cell responses to host antigens revealed or altered by smoking or infection. Understanding and manipulation of immune regulation will form a key part in the development of new treatments in coming years.


Correspondence to: Dr D S Robinson, Leukocyte Biology Section, Biomedical Sciences Division, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK; d.s.robinson@imperial.ac.uk

DSR is supported in part by a Research Leave Award from Clinical Academics from the Wellcome Trust, UK.

REFERENCES


Treatment of SARS

Antiviral agents and corticosteroids in the treatment of severe acute respiratory syndrome (SARS)

W C Yu, D S C Hui, M Chan-Yeung

Systematic evaluation of treatment modalities for SARS is still needed

The epidemic of severe acute respiratory syndrome (SARS) of 2003 caught the medical profession by surprise. The accumulated global total number of cases was 8098 with 774 deaths, a case-fatality ratio of 9.6%. Although the novel coronavirus (SARS-CoV) was discovered within weeks, treatment was inevitably empirical as controlled clinical trials were not possible during the epidemic of this new and serious illness. Many antiviral and immunomodulatory drugs, as well as other treatments such as convalescent patient plasma and traditional Chinese medicines, have been tried. Ribavirin and corticosteroids are by far the most widely used treatments for SARS. In the later phase of the epidemic, a nucleoside analogue that has activity against a number of DNA and RNA
viruses in vitro. The mechanism of action of ribavirin has been studied for decades and is still under active debate. In early March 2003, before the isolation of the SARS-CoV, many experts believed that the mysterious severe illness was due to an unknown virus and ribavirin was empirically given because of its broad spectrum antiviral activity. Furthermore, corticosteroids were increasingly prescribed for the treatment of SARS and some believed that such treatment would be dangerous if not covered with an antiviral agent. The published reports on the effectiveness of ribavirin were mostly retrospective case series with intrinsic methodological issues and it is difficult to draw conclusions. The major side effect of ribavirin is anaemia which occurs in 27–59% of patients. Anaemia reduces oxygen transport and potentiates the existing problem of oxygenation and tissue hypoxia. Other significant side effects include transaminases and bradycardia, as well as hypocalcaemia, hypomagnesaemia, and risk of teratogenicity. In a detailed study on the clinical course and viral load, Peiris et al reported that 14 patients given a standard regimen of ribavirin and steroids showed a peak viral load at day 10 from onset of illness. This study, although involving a small number of subjects, clearly indicated the inability of ribavirin to clear SARS-CoV from patients with SARS. The result of this study also explained why patients treated with ribavirin early in the illness were able to infect healthcare workers when they subsequently required endotracheal intubation. The lack of in vitro activity of the drug against SARS-CoV casts further doubts on the usefulness of ribavirin in SARS. The use of ribavirin in SARS has been reviewed elsewhere.

**Lopinavir and ritonavir**

Lopinavir and ritonavir (LPV/r) are protease inhibitors which, in combination, have been licensed for the treatment of HIV disease. Ritonavir has little protease inhibitory features of acute respiratory distress syndrome (ARDS) and septic shock, “pulse doses” at 0.5–1.0 g/day methylprednisolone have generally not been recommended for these conditions but were used extensively in SARS, particularly in the second week of illness when patients often show acute clinical deterioration. The efficacy of pulse steroids in SARS remains to be determined, but it is conceivable that higher steroid doses will result in a higher incidence and severity of side effects.

Published case series examining the clinical efficacy of steroid treatment in SARS suffer the same methodological problems as those of ribavirin. In addition, there is a wide variety of steroid dosing schedules making retrospective analysis of steroid efficacy exceptionally difficult. There is so far no systematic review of the efficacy of corticosteroid treatment in SARS based on the numerous published studies. Some investigators do feel that judicious use of corticosteroids is beneficial, but randomised controlled studies are needed to confirm the beneficial effects as well as to give insight into the optimal regimen. The possible beneficial effects, however, have to be balanced against the significant side effects including nosocomial infections, hyperglycaemia, hypokalaemia, hypertension, and gastrointestinal haemorrhage. Avascular necrosis of bone (AVN) is perhaps the most distressing medium term side effect of steroids in patients with SARS. Preliminary data on a cohort of 330 adult patients from Princess Margaret Hospital, Hong Kong who received various doses of steroids and in whom magnetic resonance imaging was performed at an average of 7.5 months from illness onset showed that AVN was present in 48 of them (14.5%, unpublished data). Of the 48, 16 (33%) had unilateral involvement of the femoral head and 19 (40%) had bilateral involvement of the femoral head. Univariate analysis showed that the total steroid dose was significantly associated with development of AVN (unpublished data).

**Corticosteroids**

Corticosteroids have been used widely to treat SARS, first in mainland China and then in Hong Kong. The main rationale for their use in SARS is that, in acute viral respiratory infections, early response cytokines such as interferon gamma (IFN-\(\gamma\)), tumour necrosis factor, interleukin 1 (IL-1), and interleukin 6 (IL-6) contribute to tissue injury. Corticosteroid treatment may suppress the “cytokine storm”. Peiris et al hypothesised that the clinical worsening often observed during the second phase of illness is the result of immunopathological damage from an overexuberant host response. In a newly published report Wong et al showed in 20 consecutive adults with SARS that there was a marked increase in the Th1 cytokine IFN-\(\gamma\), inflammatory cytokines IL-1, IL-6, and IL-12 for at least 2 weeks after disease onset. The chemokine profile showed a significant increase in IL-8, monocyte chemottractant protein-1 (MCP-1), and IFN-\(\gamma\) inducible protein-10 (IP-10). Corticosteroids significantly reduce IL-8, MCP-1, and IP-10 concentrations 5–8 days after treatment. The data confirmed the Th1 cell mediated immune and hyperinflammatory response in SARS through the accumulation of monocytes/macrophages and neutrophils. Another rationale for use of steroids in SARS is the necroscopic finding of features of acute respiratory distress syndrome (ARDS) and have there been reports of successful use of steroids in the treatment of ARDS and septic shock. In addition, systemic steroids have been used in the treatment of some infections with variable success. On the other hand, the potential for corticosteroids to suppress the innate host defence against SARS-CoV resulting in increased viral replication has to be considered. Chu et al reported an increase in viral load in one patient following pulse methylprednisolone therapy. Increased replication of other respiratory viruses has also been reported following steroid therapy.

Whereas “low dose” steroids at 0.5–1.0 mg/kg/day prednisolone (or equivalent) have been used in infections,
is the deadly avian influenza A (H5N1) which has repeatedly demonstrated its ability to infect humans, and may acquire the ability for efficient human to human transmission in the future. It is hoped that, when epidemics of new disease strikes, a systematic way of evaluating treatment modalities would be in place to provide answers to important questions in the shortest possible time.


Authors’ affiliations

W C Yu, Department of Medicine & Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China

D S C Hui, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China

M Chan-Yeung, Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China

Correspondence to: Dr W C Yu, Department of Medicine, Princess Margaret Hospital, Lai King, Hong Kong SAR, China; ywuc@ha.org.hk

REFERENCES


Short burst oxygen therapy for relief of breathlessness in COPD

C M Roberts

Thorax 2004 59: 638-640
doi: 10.1136/thx.2003.017301

Updated information and services can be found at:
http://thorax.bmj.com/content/59/8/638

These include:

References
This article cites 18 articles, 10 of which you can access for free at:
http://thorax.bmj.com/content/59/8/638#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Airway biology (1100)
General practice / family medicine (339)
Hospice (87)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/