PostScript

LETTERS TO THE EDITOR

Predictors of therapy resistant asthma

We read with interest the report by Heaney et al that the use of a systematic protocol for therapy resistant asthma resulted in control of asthma in 53% of patients who were previously poorly controlled. However, we suspect that a significant proportion of the remaining 47% of patients who were classified as having therapy resistant asthma actually had underlying gastro-oesophageal reflux disease which was either not adequately investigated (by 24 hour pH monitoring alone) or, once diagnosed, was not adequately treated (with standard dose proton pump inhibitor).

A large northern European study of 2661 subjects found that people with gastro-oesophageal reflux had a significantly higher rate of physician diagnosed current asthma and that those with reflux and asthma had more nocturnal cough, morning phlegm, sleep related symptoms, and more peak flow variability than those with asthma alone. Pathological gastro-oesophageal reflux, which is often clinically silent, has been found on pH monitoring in 53–65% of asthmatics and has been shown in various studies to cause increased oesophageal acid sensitivity, increased airway hyperresponsiveness, increased respiratory resistance, and increased respiratory symptoms. Certainly, in the case of chronic cough, gastro-oesophageal reflux has been found to be one of the most frequent underlying causes.

Heaney et al state that 17 patients with positive oesophageal pH monitoring were classified as having therapy resistant asthma because their respiratory symptoms did not improve with standard dose proton pump inhibitors. However, proton pump inhibitors have only a minor effect on the reflux of gastric contents; they alter the pH of the refluxate. This mode of action is effective in diseases such as oesophagitis where acid plays a vital role in pathogenesis. However, in airways disease non-acid reflux may be a major problem. It therefore seems surprising that other anti-reflux treatments such as algamtes were not tried in this group of patients with asthma resistant asthma.

Since the patients with asthma studied by Heaney et al underwent only pH monitoring and no oesophageal manometry, we suggest that patients categorised as having therapy resistant asthma may actually have had undiagnosed gastro-oesophageal disease. In addition, more intensive management of subjects with positive oesophageal reflux function tests would have resulted in improved respiratory symptom control, which was an important factor in defining therapy resistant asthma in this paper.

C F Everett, J A Kastelik, S A Mulrennan, A H Morice

Academic Department of Medicine, University of Hull, Castle Hill Hospital, Cottingham, East Yorkshire, UK

Correspondence to: Professor A H Morice, Academic Department of Medicine, University of Hull, Castle Hill Hospital, Castle Road, Cottingham, East Yorkshire HU16 5JQ, UK; a.h.morice@hull.ac.uk

References

Authors’ reply

In response to the letter from Professor Morice and colleagues, we welcome the growing interest in the role of the oesophageal-lung axis as evidenced by recent publications by both them and us in this journal. We agree with many of their comments regarding the frequent coinciding of gastro-oesophageal reflux and asthma, but we would suggest that this does not necessarily imply a causal association.

Four issues of substance arise from their letter concerning our paper:

1. Were our subjects adequately investigated?
2. What is the role of oesophageal dysmotility?
3. Were they adequately treated?
4. Was our definition of therapy resistant asthma appropriate?

Regarding oesophageal investigation, we would maintain that ambulatory pH monitoring remains the single best test with regard to sensitivity and specificity in the diagnosis of gastro-oesophageal reflux. We therefore believe it highly unlikely that we failed to diagnose reflux in such a large percentage of patients resistant to therapy (12 of 29 (41%) had pH profiles within normal limits). In addition, our pH probes are placed manometrically and all our subjects underwent a limited manometric study (limited in that, after assessment of the lower oesophageal sphincter, if five water bolus swallows were normal we did not perform the full 10 swallows). In only one subject was an abnormality detected (that patient was in the therapy responsive group and the diagnosis was previously unsuspected achalasia). We do not believe this supports a prominent role for undiagnosed oesophageal motility disorders in the therapy resistant group.

The authors suggest that inadequate acid suppression may relate to resistance to treatment. We did not repeat oesophageal pH monitoring when patients were treated with standard dose proton pump inhibitors.
as this would have been impractical given the already high intolerance rate for the initial procedure and the lack of enthusiasm of patients and surgeons to have this invasive procedure repeated. However, all patients in the therapy resistant group with symptomatic reflux did have an improvement in gastro-oesophageal reflux symptoms and, despite getting asthma remained difficult to control. In addition, omeprazole in a dose of 20 mg twice daily (a comparable dose to that used in our study) has been shown to provide successful acid suppression in 22 of 23 patients (96%) with Barrett’s oesophagus (a condition associated with excess oesophageal acid exposure) as well as in healthy controls.3 We note that this dose is similar to that used by Morice and colleagues.1 We therefore believe that failure of adequate acid suppression is unlikely to explain the poor response to asthma therapy.

The authors suggest that reflux of non-acid contents may have been contributory to therapy resistant asthma. In support of non-acid reflux they cite a number of papers (one of which is a review article) examining the role of both fundoplication in asthma and other conditions including chronic cough. The oesophageal reflux is uninvestigated and non-controlled and it is notable that the cited review article states that the two controlled studies compared fundoplication with H2 antagonist therapy yet still concluded that the effects of surgical treatment are similar to what would now be regarded as suboptimal medical acid suppression treatment. We are impressed with the faith the authors place in the addition of alginates to proton pump inhibitors as there is no published evidence that this would have been impractical given the objective evidence of variable airflow obstruction due to asthma...''

References
7 Coughlan JL, Gibson FG, Henry RL. Medical treatment for reflux oesophagitis does not consistently improve asthma control: a systematic review. Thorax 2001;56:198–204.

FENO as a diagnostic tool in paediatric asthma
Malmberg and colleagues reported the robust discriminatory properties of exhaled nitric oxide (FE\textsubscript{NO}) for asthma in a paediatric population, but also noted that 29% of the subjects studied could not perform the manoeuvres necessary for online NO measurements at a target expiratory flow rate of 50 ml/s.1 These results are consistent with those reported by Canady and colleagues who noted that 24% of children studied could not perform online NO analysis.1 We studied healthy and asthmatic adults and found a similarly robust ability of NO to discriminate between those with and without asthma with online technique and flow rate of 50 ml/s (area under ROC curve 0.84).1 Importantly, we also found that these discriminatory properties were not diminished when simpler offline collection techniques or faster, more tolerable, expiratory flow rates were used (areas under ROC curve 0.79–0.86). If NO measurements are to gain acceptance for identification of both asthma, use of offline techniques with faster expiratory flow rates may be preferred.

Author’s reply
We appreciate Dr Deykin’s comments regarding our recent study comparing the discriminatory power of exhaled nitric oxide (FE\textsubscript{NO}) and the oscillometric assessment of lung function for asthma in preschool children.3 We are pleased to learn that our results of the robust discriminatory properties of FE\textsubscript{NO} are consistent with his findings in healthy and asthmatic adults.3 Importantly, Dr Deykin also mentions the feasibility problems of standard online FE\textsubscript{NO} measurements in young children which we and others have found in a series of preschool children. As discussed in our paper, the standard online technique requires considerable cooperation and, according to our experience, is rarely successful in children aged less than 4 years.

Dr Deykin’s proposal of using offline measurements has practical advantages over the standard technique which relate to the portability of the samples. However, because of the flow dependence of FE\textsubscript{NO}, standardisation of the flow rate is necessary even when using this technique, so offline measurements may not be significantly easier for the child than the online method. In commercial equipment, dynamic resistors and biofeedback views on the computer screen may increase the feasibility of the measurements in young children, but there is still a need to develop new techniques and recommendations for the measurement of FE\textsubscript{NO} in children of preschool age and in infants.3 The findings of Dr Deykin and colleagues that offline measurements, when controlled at low and faster flow rates, maintain good discriminatory properties for asthma are certainly important when such recommendations are to be updated. However, further studies are necessary to see whether these results can be extrapolated and applied to young children.

L P Malmberg
Department of Allergy, Helsinki University Central Hospital, Finland

References
Predictors of therapy resistant asthma

C F Everett, J A Kastelik, S A Mulrennan and A H Morice

Thorax 2004 59: 270-271
doi: 10.1136/thx.2003.014514

Updated information and services can be found at:
http://thorax.bmj.com/content/59/3/270

These include:

References
This article cites 20 articles, 4 of which you can access for free at:
http://thorax.bmj.com/content/59/3/270#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/