Nasal airway ion transport is linked to the cystic fibrosis phenotype in adult patients

I Fajac, D Hubert, D Guillemot, I Honoré, T Bienvenu, F Volter, J Dall’Ava-Santucci, D J Dusser

Background: This study was conducted to determine whether the major nasal airway ion transport abnormalities in cystic fibrosis (that is, defective cAMP regulated chloride secretion and basal sodium hyperabsorption) are related to the clinical expression of cystic fibrosis and/or to the genotype.

Methods: Nasal potential difference was measured in 79 adult patients with cystic fibrosis for whom clinical status, respiratory function, and CFTR genotype were determined.

Results: In univariate and multivariate analysis, patients with pancreatic insufficiency were more likely to have low responses to low chloride (odds ratio (OR) 8.6 (95% CI 1.3 to 58.5), p = 0.03) and isoproterenol (OR 11.2 (95% CI 1.3 to 93.9), p = 0.03) solutions. Similarly, in univariate and multivariate analysis, patients with poor respiratory function (forced expiratory volume in 1 second <50% of predicted value) were more likely to have an enhanced response to amiloride solution (OR 3.7 (95% CI 1.3 to 11.0), p = 0.02). However, there was no significant relationship between nasal potential difference and the severity of the genotype.

Conclusions: Nasal epithelial ion transport in cystic fibrosis is linked to the clinical expression of the disease. The pancreatic status appears to be mostly related to the defect in epithelial chloride secretion whereas the respiratory status is mostly related to abnormal sodium transport and the regulatory function of the CFTR protein.
The response to the in the amiloride solution was replaced by gluconate); and (4) the change in PD following a perfusion of a low chloride solution (ΔCl:\amil) to allow the determination of basal chloride conductance (in this solution the chloride contained in the amiloride solution was replaced by gluconate); and (4) the response to the β adrenergic agonist isoproterenol (10⁻⁵ M (Δiso/Cl⁻) which was added to the low chloride solution containing amiloride. Isoprotenerol induces cAMP dependent chloride conductance and determines the presence of CFTR. Superfusion of the nasal epithelium with each solution was continued until a steady state was reached, or for at least 3 minutes.

Twenty six non-CF subjects with bronchiectasis were studied to determine control values. All subjects had a normal sweat test and no mutation in the CFTR gene. The median (range) results were as follows: basal nasal PD –18 mV (–30 to –11); Δamil 13 mV (2–26); ΔCl:\amil –12 mV (–36 to –5); Δiso/Cl⁻ –6 mV (–15 to 7) (fig 1).

Deoxyribonucleic acid (DNA) analysis and classification of mutations

For all patients, all 27 exons and flanking regions of the CFTR gene were screened for mutations, either with a commercially available kit (Cystic Fibrosis Assay, Applied Biosystems, Foster City, CA, USA) for the 31 most frequent mutations in the CFTR gene or, for totally or partially uncharacterised samples, by denaturing gradient gel electrophoresis (DGGE) on genomic DNA amplified by the polymerase chain reaction. Patients were classified into two genotype groups according to the probable effect of their mutations on CFTR function, regardless of clinical features, using the classification of CFTR mutations proposed by Welsh and Smith and expanded by Zielenski and Tsui. The “severe” genotype group included patients with two CFTR mutations belonging to class I, II or III, while the “mild” genotype group included patients with at least one mutation belonging to class IV or V.

Statistical analysis

Continuous variables were expressed as median (range). Univariate correlations between continuous variables were explored using Spearman’s rank correlation. Comparisons were tested using Spearman’s rank correlation test or the non-parametric Mann-Whitney U test. Multivariate analysis of factors associated with pancreatic status, respiratory function, and genotype were performed as follows. All continuous variables were dichotomised according to the median or to a cut off point of 50% of the predicted value for FEV₁. The cut off point of 50% of the predicted value for FEV₁ was chosen because it is usually the cut off point below which an obstructive abnormality is considered “severe”. A univariate analysis was first performed using the Fisher’s exact test. Thus, multivariate logistic regression models were built first including variables when the univariate p value was less than 0.2 and finally keeping variables in the model by a backward stepwise regression and by maximising the likelihood of the model with the likelihood ratio test. Stata/SE 8.0 software was used. p values of < 0.05 were considered statistically significant.
RESULTS

Patients

Four of the 79 CF patients included in the study had a normal sweat test; three were compound heterozygous for the F508Δ mutation and the R117H, D1152H and R347H mutations, respectively, and one patient was compound heterozygous for the G542X and 3849+10 kb (C)→ (T) mutations. The sweat chloride levels for these patients were 40, 13, 49 and 52 mmol/l, respectively. All patients had bronchiectasis confirmed by computed tomographic (CT) scanning. Table 1 shows the clinical characteristics of the patients. In six patients only one mutation was identified. The 73 patients for whom two mutations were identified were classified into two genotype groups: the “severe” genotype group included 51 patients of whom 25 were homzygous for the F508Δ mutation, and the “mild” genotype group comprised 22 patients.

Nasal PD measurements

Nasal PD measurements in the 79 CF patients are shown in table 1 and fig 1. They were different from those observed in our non-CF control group: CF patients had increased sodium transport, as shown by increased basal PD and increased response to amiloride perfusion (p < 0.0001 for both), and a low response to perfusion with low chloride solution and isoproterenol (p < 0.0001 for both; fig 1). Six CF patients had, in absolute value, a basal PD of <31 mV which represents the mean±2SD of our control group. However, all had a typical CF response to pharmacological solutions with an absence or a very low response to low chloride solution, isoproterenol, or both.

Figure 3 Nasal PD tracings in four patients with CF. Basal PD was measured with a Kreb’s HEPES solution (KH), after which the nasal epithelium was superfused with 10⁻⁵ M amiloride (Amil), a low chloride solution (0 Cl⁻), and 10⁻⁵ M isoproterenol (Iso). Tracings are shown for two CF patients with pancreatic insufficiency (top panels) and FEV₁ <50% pred (left panel) or FEV₁ >50% pred (right panel), both of whom were homzygous for the F508Δ mutation and belonged to the “severe” genotype group; and two CF patients with pancreatic sufficiency (bottom panels) and FEV₁ <50% pred (left panel) or FEV₁ >50% pred (right panel), both of whom were compound heterozygous for the F508Δ mutation and the R117H and G85E mutations, respectively, and belonged to the “mild” genotype group. The two patients with FEV₁ <50% pred had a higher basal nasal PD and a higher response to amiloride than the two patients with FEV₁ >50% pred, and the two patients with pancreatic sufficiency had a higher response to low chloride solution and isoproterenol than the patients with pancreatic insufficiency.

Relationships between nasal PD, phenotype and CFTR genotype

No difference in sodium transport was observed between patients with pancreatic sufficiency or insufficiency. However, patients with pancreatic sufficiency had a higher response to low chloride solution and isoproterenol than patients with pancreatic insufficiency (p = 0.003 and p = 0.01, respectively, table 2, figs 2 and 3). There was no difference in basal PD and in the response to the different solutions between patients with or without P aeruginosa colonisation (table 2). Basal nasal PD and responses to amiloride were both correlated with FEV₁ (p = 0.04 and p = 0.009, respectively, table 2) and FVC (p = 0.03 and p = 0.01, respectively, table 2). When FEV₁ was classified into two groups of severity with a cut off point of 50% of the predicted value, severe respiratory function was similarly associated with a high basal nasal PD and a high response to amiloride (p = 0.005 and 0.003, respectively, table 2, figs 3 and 4). No correlation was observed between the indicators of pulmonary function and the responses to low chloride solution or isoproterenol, except for PaCO₂ and the response to isoproterenol (p = 0.04, table 2).

No relationship was observed between nasal PD and all other clinical characteristics (sex, age and symptoms at diagnosis, sweat chloride concentrations, BMI, the presence of meconium ileus or diabetes). Patients with the “mild” genotype had a lower basal nasal PD than those with the “severe” genotype (p = 0.01, table 2). No difference was observed between the severity of the genotype and the responses to amiloride, low chloride solution, or isoproterenol.
Factors associated with a severe phenotype or a severe genotype

In order to evaluate which data were associated with the pancreatic status, quantitative data were classified into two groups of severity and a multivariate analysis was performed (table 3). Patients with pancreatic insufficiency were more likely to have a “severe” genotype (odds ratio (OR) 28.2 (95% confidence interval (CI) 4.5 to 178.1), p<0.001), a “low” BMI (OR 8.8 (95% CI 1.3 to 58.3), p = 0.03), and low responses to low chloride (OR 8.6 (95% CI 1.3 to 58.5), p = 0.03) and isoproterenol (OR 11.2 (95% CI 1.3 to 93.9), p = 0.03) solutions.

In order to evaluate which data were associated with the respiratory function as assessed by FEV₁, a similar analysis was performed (table 4). Patients with FEV₁ <50% predicted were more likely to be colonised with *P aeruginosa* (OR 13.8 (95% CI 2.8 to 68.6), p = 0.001) and to have an enhanced response to amiloride solution (OR 3.7 (95% CI 1.3 to 11.0), p = 0.03). Using a similar multivariate analysis we studied which data were associated with the genotype. There was no significant relationship between nasal PD measurements and the severity of the genotype. The only parameter linked to the “severe” genotype group was pancreatic insufficiency (OR 15.7 (95% CI 4.0 to 61.6), p<0.0001).

DISCUSSION

In this study we have shown that the basic defects in CF—that is, the two major ion transport abnormalities—are associated with the two major clinical components of the disease: pancreatic insufficiency and lung disease. The pancreatic status is mostly related to epithelial chloride secretion whereas the severity of lung disease is linked to abnormal sodium transport.

In univariate analysis the pancreatic status was related to both basal and cAMP regulated chloride secretion. This was confirmed by the multivariate analysis which showed that patients with pancreatic insufficiency were more likely to have a severe genotype, low BMI, and decreased basal and cAMP regulated chloride permeabilities across the nasal airway epithelium. The relationship between the genotype and the pancreatic status is well established. Similarly, the link between exocrine pancreatic insufficiency causing malabsorption of fats and proteins and a low BMI is obvious. In this study we show that there is also a link between nasal airway chloride secretion and pancreatic status. A relationship between residual chloride transport in intestinal tissue and a mildly affected phenotype, as assessed by the predicted weight for height and the FEV₁, has previously been described in F508A homozygous twins and siblings by Bronsveld et al but the reverse—that is, the relationship between nasal airway ion transport and the nutritional status—was not examined by these researchers nor in a recent study of 51 young CF patients of whom three were pancreatic sufficient. The relationship we have observed after both low chloride and isoproterenol solutions may reflect the fact that the pancreatic status in CF is related to the residual function of CFTR. Such a relationship is in keeping with the well known relationship between CFTR genotype and pancreatic status. CF pancreatic insufficiency is thought to be due mainly to abnormal bicarbonate secretion in which CFTR plays a critical but poorly defined role. In epithelial cells the CAMP stimulated chloride current is conducted by both CFTR and the outwardly rectifying chloride channel. Hence, the relationship we observed between responses to low chloride and isoproterenol solutions and pancreatic status raises the question of a possible role for other chloride channels regulated by CFTR in CF pancreatic insufficiency.

Univariate analysis showed that, in adults with CF, irrespective of the severity of the genotype, the severity of the respiratory function is related to the extent of sodium hyperabsorption as assessed by basal nasal PD and response

<p>| Table 2 Nasal PD measurements, clinical data and genotype: univariate analysis |
|--|----------------|----------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Basal nasal PD</th>
<th>∆amil</th>
<th>∆Cl⁻/amil</th>
<th>∆iso/Cl⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>pancreatic status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>-48 (-91 to -19)</td>
<td>29 (10 to 68)</td>
<td>-4 (-16 to 4)</td>
<td>2 (-5 to 17)</td>
</tr>
<tr>
<td>PS</td>
<td>-46 (-63 to -20)</td>
<td>27 (4 to 45)</td>
<td>-7 (-16 to -3)</td>
<td>1 (-8 to 4)</td>
</tr>
<tr>
<td>P. aeruginosa colonisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>-50 (-91 to -19)</td>
<td>28 (10 to 59)</td>
<td>-4 (-16 to 4)</td>
<td>2 (-5 to 17)</td>
</tr>
<tr>
<td>No</td>
<td>-45 (-75 to -20)</td>
<td>28 (4 to 68)</td>
<td>-5 (-14 to 0)</td>
<td>1 (-3 to 10)</td>
</tr>
<tr>
<td>FEV₁ (% pred)</td>
<td>0.24 (0.01 to 0.44)</td>
<td>-0.29 (-0.49 to -0.08)</td>
<td>0.01 (-0.21 to 0.23)</td>
<td>-0.13 (-0.34 to 0.10)</td>
</tr>
<tr>
<td>FVC (% pred)</td>
<td>0.28 (0.03 to 0.49)</td>
<td>-0.28 (-0.48 to -0.00)</td>
<td>-0.09 (-0.31 to 0.13)</td>
<td>0.11 (-0.33 to 0.11)</td>
</tr>
<tr>
<td>PaCO₂ (kPa) *</td>
<td>0.09 (-0.14 to 0.31)</td>
<td>-0.17 (-0.38 to -0.06)</td>
<td>0.03 (-0.19 to 0.26)</td>
<td>-0.09 (-0.31 to 0.14)</td>
</tr>
<tr>
<td>PaCO₂ (kPa) *</td>
<td>0.00 (0.00 to 0.00)</td>
<td>0.00 (0.00 to 0.00)</td>
<td>0.02 (0.01 to 0.02)</td>
<td>0.00 (0.00 to 0.00)</td>
</tr>
<tr>
<td>FEV₁ ≤50% pred (n = 30)</td>
<td>-54 (-91 to -22)</td>
<td>36 (16 to 59)</td>
<td>-5 (-15 to 1)</td>
<td>2 (-8 to 15)</td>
</tr>
<tr>
<td>FEV₁ >50% pred (n = 49)</td>
<td>-45 (-75 to -19)</td>
<td>26 (4 to 68)</td>
<td>-5 (-16 to 4)</td>
<td>1 (-3 to 17)</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Severe” (n = 50)</td>
<td>-50 (-91 to -22)</td>
<td>34 (13 to 59)</td>
<td>-4 (-15 to 4)</td>
<td>2 (-5 to 17)</td>
</tr>
<tr>
<td>“Mild” (n = 22)</td>
<td>-42 (-63 to -19)</td>
<td>26 (4 to 51)</td>
<td>-6 (-16 to 0)</td>
<td>1 (-8 to 5)</td>
</tr>
</tbody>
</table>

Data are expressed as median (range) or as *Spearman’s correlation coefficient (r) with 95% confidence intervals. PI, pancreatic insufficiency; PS, pancreatic sufficiency; FEV₁, FEV₁ classified into two groups of severity with a cut off point of 50% of the predicted value (% pred).

Figure 4 Respiratory status as assessed by FEV₁ and epithelial sodium absorption in patients with CF. The basal PD and response to superfusion with 10⁻⁵ M amiloride (∆amil) are shown in patients with FEV₁ >50% and <50% of the predicted value (pred). Each box plot is composed of five horizontal lines that display the 10th, 25th, 50th, 75th and 90th percentiles of the variable. All values for the variable above the 90th percentile and below the 10th percentile are plotted separately.
to the sodium blocker amiloride. In order to perform a multivariate analysis, the respiratory function, as assessed by FEV₁, was classified into two groups of severity according to a cut off point of 50% of the predicted value. FEV₁ was chosen because it is the variable that best reflects the status of lung function throughout the course of CF lung disease, and the cut off point of 50% of the predicted value is usually the point below which an obstructive abnormality is considered "severe". Multivariate analysis showed that the severity of the respiratory function as assessed by FEV₁ was linked to P. aeruginosa colonisation, a well known factor linked to poor respiratory prognosis, but also to the magnitude of the response to amiloride. In multivariate analysis, respiratory function was not linked to basal nasal PD, the other index of sodium transport rate. This discrepancy, which was not found in univariate analysis, is likely to be due to the small sample size. The relationship we found between respiratory function and sodium transport confirms and expands our recent data showing that transgenic mice exhibit a CF-like lung disease. They are also in accordance with recent data showing that transgenic mice overexpressing the β subunit of the epithelial sodium channel exhibit a CF-like lung disease.

In univariate analysis the severity of the genotype was linked to defective nasal sodium transport. This was not confirmed by multivariate analysis in which, as previously reported, the genotype was only linked to the pancreatic status. A number of studies have found an association between some genetic variants and respiratory function in CF. In particular, polymorphisms affecting the function of genes that mediate innate immunity and other inflammatory processes have been highlighted. Our data further emphasise that factors other than the CFTR gene contribute to airway epithelial ion transport measured by nasal PD. They also point to the importance of measuring nasal PD in patients with CF since it reflects not only CFTR function and

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe genotype</td>
<td>16.0 (3.2 to 80.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI < 20</td>
<td>2.9 (0.9 to 9.6)</td>
<td>0.1</td>
</tr>
<tr>
<td>P. aeruginosa colonisation</td>
<td>2.8 (0.9 to 9.0)</td>
<td>0.08</td>
</tr>
<tr>
<td>FEV₁ < 50% pred</td>
<td>3.3 (0.8 to 13.4)</td>
<td>0.09</td>
</tr>
<tr>
<td>FVC < 70% pred</td>
<td>2.5 (0.8 to 8.3)</td>
<td>0.16</td>
</tr>
<tr>
<td>PaO₂ < 54 kPa</td>
<td>2.7 (0.8 to 9.0)</td>
<td>0.16</td>
</tr>
<tr>
<td>PaCO₂ > 5.5 kPa</td>
<td>0.8 (3.3 to 2.4)</td>
<td>0.78</td>
</tr>
<tr>
<td>Basal nasal PD < -47 mV</td>
<td>1.6 (0.5 to 4.9)</td>
<td>0.42</td>
</tr>
<tr>
<td>Δamil > 29 mV</td>
<td>1.2 (0.4 to 3.5)</td>
<td>0.79</td>
</tr>
<tr>
<td>ΔCl < amil > -5 mV</td>
<td>5.0 (1.2 to 20.3)</td>
<td>0.01</td>
</tr>
<tr>
<td>Δiso/Cl > 2 mV</td>
<td>5.8 (1.1 to 29.5)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

All quantitative variables were dichotomised according to the median. Fisher’s exact test was used for univariate analysis and a logistic regression was performed for multivariate analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe genotype</td>
<td>4.0 (0.9 to 16.8)</td>
<td>0.07</td>
</tr>
<tr>
<td>BMI < 20</td>
<td>2.9 (0.9 to 9.6)</td>
<td>0.1</td>
</tr>
<tr>
<td>Pancreatic insufficiency</td>
<td>3.3 (0.8 to 13.4)</td>
<td>0.09</td>
</tr>
<tr>
<td>P. aeruginosa colonisation</td>
<td>11.4 (2.1 to 62.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Basal nasal PD < -47 mV</td>
<td>3.6 (1.3 to 9.9)</td>
<td>0.01</td>
</tr>
<tr>
<td>Δamil > 29 mV</td>
<td>3.1 (1.1 to 8.3)</td>
<td>0.04</td>
</tr>
<tr>
<td>ΔCl < amil > -5 mV</td>
<td>1.1 (0.4 to 2.8)</td>
<td>0.8</td>
</tr>
<tr>
<td>Δiso/Cl > 2 mV</td>
<td>0.8 (0.3 to 2.0)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

All quantitative variables were dichotomised according to the median. Fisher’s exact test was used for univariate analysis and a logistic regression was performed for multivariate analysis.

OR, odds ratio; CI, confidence interval; BMI, body mass index.
its regulation of other channels but also the impact of other genetic or environmental factors affecting the disease phenotype.

We conclude that, in a population of CF adults, the clinical outcome is associated with expression of the basic ion transport defects. Pancreatic insufficiency is linked to highly defective epithelial chloride secretion, whereas the severity of lung disease is associated with the extent of sodium hyperabsorption. This is one of the few reports to link the major ion transport abnormalities in CF with the major clinical components of the disease.13–16 These findings suggest that measurement of nasal PD is useful not only for CF diagnosis, but also to gain more insight into the patient's electrophysiological characteristics in correlation with disease severity.

ACKNOWLEDGEMENTS

The authors thank S Remeur, M Lachaux, S Rebeyrol, M Morin and C Bessière (Service d’Explorations Fonctionnelles, Hôpital Cochin, Paris, France) for technical assistance and C Bernède (CeRBP, Institut Pasteur, Paris, France) for statistical assistance.

............................

Authors' affiliations

I Fajac, F Volter, J Dall’Ava-Santucci, Service d’Explorations Fonctionnelles, CHU Cochin, AP-HP-Université, Paris, France
D Hubert, I Honoré, D J Dusser, Service de Pneumologie, CHU Cochin, AP-HP-Université, Paris, France
D Guillemot, CeRBP, Institut Pasteur, Paris, France
T Bienvenu, Laboratoire de Biochimie et Génétique Moléculaires, CHU Cochin, AP-HP-Université, Paris, France

This study was supported by the Association Vaincre la Mucoviscidose.

REFERENCES

8 Boucher RC. Human airway ion transport. Am J Respir Crit Care Med. 1994; 150: 271–81, 581–93
16 Wallace HL, Barker PM, Southern KW. Nasal airway ion transport and lung function in young people with cystic fibrosis. Am J Respir Crit Care Med 2003; 168: 594–600
Nasal airway ion transport is linked to the cystic fibrosis phenotype in adult patients

I Fajac, D Hubert, D Guillemot, I Honoré, T Bienvenu, F Volter, J Dall'Ava-Santucci and D J Dusser

Thorax 2004 59: 971-976
doi: 10.1136/thx.2003.020933

Updated information and services can be found at:
http://thorax.bmj.com/content/59/11/971

These include:

References
This article cites 26 articles, 6 of which you can access for free at:
http://thorax.bmj.com/content/59/11/971#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

 keyboards Airway biology (1100)
 Cystic fibrosis (525)
 Lung function (773)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/