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a1-Antitrypsin deficiency ? 6: New and emerging treatments
for a1-antitrypsin deficiency
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Alpha-1-antitrypsin (AAT) deficiency is a genetic condition
that increases the risk of developing lung and liver disease,
as well as other associated conditions. Most treatment of
affected individuals is not specifically directed at AAT
deficiency but focuses on the resultant disease state. The
only currently available specific therapeutic agent—
namely, intravenous augmentation with plasma derived
AAT protein—is marketed in a limited number of countries.
Treatments aimed at correcting the underlying genetic
abnormality, supplementing or modifying the gene
product, and halting or reversing organ injury are now
beginning to emerge. These innovative approaches may
prove effective at modifying or eliminating diseases
association with AAT deficiency.
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A
lpha-1 antitrypsin deficiency, also known
as a1-proteinase inhibitor deficiency or,
more simply, Alpha-1, is a genetic condi-

tion that increases the risk of developing a
variety of diseases including pulmonary emphy-
sema and cirrhosis of the liver. It is caused by
mutations in the gene coding for the 52 kDa
glycoprotein a1-antitrypsin (AAT),1 2 the body’s
major serine proteinase inhibitor or serpin.3 This
gene is located in the long arm of chromosome
14 of the human genome.4 When first described
in 1963,5 AAT deficiency was looked upon as a
vanishingly rare condition that left affected
individuals with precocious severe emphysema.
Now it is understood to be a genetic condition
with a relatively high prevalence that can have
various clinical presentations, ranging from no
health effects through more typical chronic lung
or liver disease in the elderly to the more classic
neonatal cirrhosis or precocious emphysema of
young adults.6–8

Over 100 allelic variants of this gene have been
identified and 34 of them have been associated
with a quantitative or functional deficiency of
circulating AAT.9 In its classic form, an inherited
mutation of the AAT gene causes the build up of
abnormal AAT within the hepatocytes of the
liver. The liver is the major source of circulating
AAT and this transport problem leads to low
levels of AAT in the blood and tissues.
The proteinase inhibitor or Pi system has been

used to name the various mutations of the AAT
gene.10 The normal genotype is Pi M and the
classic severe deficiency is associated with the
Pi Z genotype. Individuals with the Pi Z geno-
type tend to have circulating levels of AAT that

are 10–15% that of individuals with the Pi M
genotype.11 Other genotypes associated with
severe deficiency include Pi SZ, Pi Z/Null and
Pi Null, as well as an array of much rarer Pi
types.1 12 Genotypes have been identified that
lead to production of a protein that is dysfunc-
tional as an elastase inhibitor and cause
increased risk of emphysema, but are released
at normal levels into the circulation.9 13 It has
been estimated that there are approximately
100 000 severely deficient individuals in the US
and approximately 25 million carriers of at least
one deficient gene for AAT.14 15 Similar numbers
have been suggested for the European popula-
tion. It has been estimated that less than 6% of
severely deficient individuals are currently iden-
tified. In general, the co-dominant expression of
the AAT gene leads to intermediate circulating
levels of AAT in carriers. The severe deficiency of
AAT and, to a lesser degree, the carrying of a
single deficient gene, lead to an increased risk of
developing pulmonary emphysema,16 17 liver fail-
ure in newborns and young children,6 18 liver
injury with cirrhosis in adults,19 20 necrotising
panniculitis,21–24 bronchiectasis,25 26 and perhaps a
number of other diseases.21 27 28

ROLE OF AAT
There does not appear to be a unifying mechan-
ism for the panoply of illnesses associated with
AAT deficiency. While AAT is the archetype of
the serpin family and is an extremely effective
inhibitor of such tissue destroying proteolytic
enzymes as neutrophil elastase,29 30 it has also
been shown to have both anti- and pro-inflam-
matory properties.31–34 The classic proteinase
pathogenesis model of pulmonary emphysema,
formulated based on animal models of emphy-
sema and our understanding of the serpin
activity of AAT, suggests that the pulmonary
emphysema associated with AAT deficiency is
due to the unbridled proteolytic activity of
neutrophil elastase on lung connective tissue
leading to alveolar destruction,29 35–37 This model
is still well accepted, although there is growing
evidence that the pathways leading to pulmon-
ary emphysema may be considerably more
complex and serpentine.38–40

While the effectiveness of AAT as an inhibitor
of serine proteinases is undisputed, there is
evidence for other properties as well that may
play a role in disease due to its deficiency. It has
been shown that the Pi Z mutation leads to
production of a protein with a propensity to
polymerisation both within the hepatocyte11 and
in the lungs.41 This polymerised AAT may be pro-
inflammatory,32 42 acting as (or stimulating the
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release of) a chemoattractant for phagocytic cells. In
addition, oxidative inactivation of AAT appears to play a
major role in the local regulation of this antiproteinase43–47

and, perhaps, in the effects of cigarette smoke on the lung,
even in individuals with normal AAT.48 49

While the proteinase-antiproteinase balance may also play
a role in the liver disease of AAT deficiency, most believe that
retention of misfolded and polymerised AAT within the
endoplasmic reticulum of hepatocytes of affected individuals
and the response of hepatocytes to this retained protein are
more likely culprits in this form of AAT deficiency associated
disease.7 11 50–52 The AAT deficiency associated vasculitides,
necrotising panniculitis, and Wegner’s granulomatosis have
even more abstruse pathophysiologies.

PAST AND CURRENT SPECIFIC TREATMENTS
With this background, scientists both within and without the
biopharmaceutical industry have attempted develop specific
treatments for AAT deficiency. AAT is an acute phase
reactant and, as such, AAT synthesis is stepped up during
episodes of systemic inflammation or stress. Early attempts at
devising specific treatment for AAT deficiency relied on this
attribute.53 Danozol, a synthetic androgen, is capable of
stimulating the acute phase response and was advocated to
stimulate hepatic production of AAT.54 While statistically
significant increases in circulating AAT levels were docu-
mented with this treatment, a clinical response to these small
changes was impossible to detect.
In the 1980s it was appreciated that AAT could be purified

in quantity from the plasma of healthy individuals and
delivered intravenously to individuals with AAT deficiency.55

This intravenous augmentation therapy was shown to raise
the circulating levels of AAT as well as the levels in
bronchoalveolar lavage (BAL) fluid. Based on an evaluation
of the circulating AAT levels in a relatively small number of
Pi SZ individuals with and without pulmonary emphysema,
it was found that individuals with circulating AAT levels of
.15 mM (80 mg/dl) seemed to be protected from lung
destruction and this became the target trough level for
intravenous augmentation therapy. A dose of 60 mg/kg body
weight of this purified AAT administered weekly appeared to
maintain levels above this target threshold and to raise BAL
fluid levels of AAT significantly. This became the recom-
mended dose for Prolastin when it was approved for
marketing in the US by Cutter Laboratories at the end of
1987.56 57 Currently marketed by Bayer Biologicals (West
Haven, Connecticut, USA) in the US, Canada, Germany,
Spain, Italy, and Sweden, it remains the most widely
prescribed specific treatment for the pulmonary disease
associated with AAT deficiency. In the USA, two additional
plasma derived intravenous augmentation products have
now received marketing approval (Zemaira, ZLB Behring, PA,
and Aralast, Baxter Healthcare, IL). Based on clinical trials
currently underway, it is expected that at least two more
companies will enter the intravenous augmentation therapy
market in the coming years.
A major concern regarding these products is that con-

clusive documentation of effectiveness at preventing AAT
deficiency associated lung disease has been lacking. Where
marketed, approval for all these products has been based on
biochemical efficacy and safety criteria alone. None has been
evaluated using a placebo controlled, randomised, blinded/
masked clinical trial design to document effectiveness in
treating or preventing emphysema. Even the two newer US
products were approved based on small trials documenting
their ‘‘non-inferiority’’ to Prolastin in trough AAT blood
levels, BAL fluid AAT levels, and safety.58

The efficacy of Prolastin has been evaluated in a number of
uncontrolled trials as well as in one randomised trial with an

unconventional dosing regimen and a small patient popula-
tion. In the early 1990s the German and US AAT deficiency
registries each looked at the mortality and rate of decline in
lung function for enrolled individuals who received Prolastin
compared with those who did not.59 60 Both groups reported
that those receiving Prolastin had a decreased rate of decline
in lung function and a decreased mortality compared with
those who never received Prolastin. The decreased rate of
decline in lung function only reached statistical significance
in the group identified as having moderate lung function
impairment. The German group went on to confirm that,
when patients were used as their own controls, comparing
the decline in lung function before and after starting
Prolastin in the same individuals, a decrease in the rate of
decline in lung function could be documented in the post-
Prolastin period, especially in individuals who had a rapid
decline in lung function during their baseline measure-
ments.61 An additional analysis compared German patients
receiving Prolastin with Danish patients who did not.62 Again,
the group with moderately impaired lung function receiving
Prolastin demonstrated a significant decrease in the rate of
decline of their lung function. A randomised study of 56
patients in Denmark and the Netherlands showed a trend to
less loss of lung tissue in Prolastin treated individuals, as
judged by lung densitometry using computed tomography of
the lungs.63 Finally, a study employing an internet based
questionnaire suggested that Prolastin treatment reduced the
frequency of exacerbations in lung affected individuals with
AAT deficiency.64 None of the evidence accumulated so far
has been sufficiently compelling to expand approval of
intravenous augmentation therapy throughout Europe.

EMERGING NEW TREATMENTS
Alternative routes of administration of current
treatment
Even where available, current use of intravenous augmenta-
tion therapy is limited by supply of drug, lack of efficacy
documentation, and extreme inconvenience of administra-
tion. All three limitations are currently being addressed by
the evaluation of alternative routes of administration. Most
studies are focusing on drug delivery by inhalation. There
was initial reluctance to pursue development of inhaled AAT
since it was difficult to document that the inhaled protein
was able to be delivered to the pulmonary interstitium where
proteolytic activity was thought to be doing its damage in
pulmonary emphysema.65 In recent years, however, it has
been shown that the airways of individuals with AAT
deficiency are under a constant inflammatory barrage31 and
that administration of exogenous inhaled AAT can recon-
stitute the lower respiratory tract antiproteinase screen and
potentially reduce inflammation.65 66 Interest in this route of
administration has therefore been renewed.
Several companies that have developed products for

intravenous administration have produced agents formulated
for inhaled administration and have tested them in humans.
The ease of administration compared with the intravenous
route is obvious. Since these agents are being administered
directly to the lungs, smaller doses are required than for
intravenous administration, potentially allowing the limited
plasma supply to treat a larger number of patients. Finally, it
is expected that these products will be evaluated in
randomised, blinded efficacy trials. Unfortunately, at the
time of this review, no one has undertaken the step of
beginning such an efficacy trial, presumably because of the
cost and time involved in such a major clinical programme.

Alternative sources of augmentation therapy
Another troubling aspect of intravenous augmentation
therapy is the source of the drug—namely, human plasma.
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The primary concerns relate to the limited supply of this raw
material and the potential for transmission of infectious
agents. Because of these concerns, alternative sources of
augmentation therapy have been sought. This has prompted
the development of transgenic/recombinant sources of the
human AAT protein and the evaluation of synthetic
inhibitors of neutrophil elastase. Transgenic production of
human AAT protein has been accomplished in both sheep
(PPL Therapeutics, Scotland, UK and Bayer Biologicals, West
Haven, Conn, USA)67 and goats (Genzyme, Boston, Mass,
USA).68 Human AAT has also been produced in yeast using
recombinant technology (Baxter Healthcare, IL, USA and
Arriva Pharmaceuticals, Alameda, CA, USA).69 Because of
anomalies in the glycosylation of the AAT protein in these
various species, these proteins are cleared rapidly from the
human circulation making intravenous administration
impractical. The PPL product and the yeast derived AAT
have been evaluated in human safety studies using an
inhaled route of administration. Whether these will prove
safe and effective at preventing lung destruction in AAT
deficiency is yet to be shown.
Potent synthetic inhibitors of human neutrophil elastase

have been in use for decades. Several have been evaluated in
humans including agents administered intravenously and
orally.70–74 In an attempt to capture early hints of efficacy,
these agents have been used to treat ARDS, cystic fibrosis,
chronic bronchitis, and exacerbations of COPD. None of these
trials has so far yielded results promising enough to justify
embarking on expensive long term trials aimed at modi-
fying the progression of pulmonary emphysema in AAT
deficiency.

Treatments aimed at pulmonary emphysema
A number of agents for the treatment of pulmonary
emphysema due to smoking are under development. While
these are aimed at the broad COPD population, clinical
evaluation of these agents in patients with AAT deficiency
has proved attractive as individuals with AAT deficiency
related emphysema tend to be younger, have fewer compli-
cating medical conditions, and to have ‘‘pure’’ emphysema.
Several stand out within this group.
The first are the retinoids. Studies using elastase induced

emphysema in rats suggested that administration of all-trans
retinoic acid (ATRA) was associated with reversal of the
emphysematous changes.75 Based on this finding, it was
suggested that ATRA might stimulate the growth of new
alveoli in humans with emphysema. Clinical trials in humans
with emphysema have failed to demonstrate measurable
improvements in indices of lung destruction so far but these
studies are ongoing.76

Another line of investigation has been based on the
observation that the lungs of individuals with emphysema
tend to have dramatic reductions in the hyaluronic acid
content.77 When animals are administered hyaluronic acid
they are protected from exogenous elastase induced emphy-
sema.78 79 These findings have led to trials of inhaled
hyaluronic acid in individuals with AAT deficiency in the
hope of preventing the progression of lung disease.
Finally, our understanding that oxidative inactivation of

AAT may lead to loss of antiproteinase activity has led to
consideration of drugs with antioxidant potential in the
treatment of individuals with AAT deficiency related emphy-
sema. Physicians have been suggesting the use of supple-
ments containing vitamins A, C, and/or E based on this
rationale, and more potent antioxidants are also being
considered for evaluation.80–82 So far there is little evidence
of benefit to individuals with AAT deficiency from these
approaches.

Treatments aimed at the liver
Since most deficient genotypes lead to production of an AAT
protein that has fairly potent antineutrophil elastase capacity,
one therapeutic concept has been aimed at trying to cause the
liver to release its trapped AAT, thus relieving the congestion
of the hepatocyte and reconstituting the circulating anti-
elastase screen. The most promising candidates for this
approach are the synthetic chaperones and molecular
interventions that try to prevent intracellular polymerisation
of the abnormal AAT.
Synthetic chaperones have been used in intracellular

protein transport diseases such as cystic fibrosis.83 The most
studied candidate is 4-phenyl-butyric acid (4-PBA) and this
has been studied in AAT deficiency at several centres.84 Initial
results suggest that improvements in liver retention of AAT
and increases in serum levels of this protein are modest at
best and that the gastrointestinal side effects of this
treatment can be dose limiting. Still, this remains an area
of active investigation.
With the elucidation of the molecular mechanisms of

polymerisation of the Z protein in the liver, work has turned
towards molecular interventions that could prevent these
intermolecular interactions and allow the release of mono-
meric AAT molecules into the circulation. Two approaches
have been described so far. The first uses small peptides
designed to fit specifically into the open beta-sheet site on the
abnormal AAT molecule where the intermolecular interaction
takes place, thus blocking the insertion of the inhibitory site
loop of one AAT molecule into the ‘‘sheet’’ of the next.85

The second approach attempts to target specific amino
acids located within appropriate surface cavities on the AAT
molecule and to replace them with more bulky or charged
amino acids. This approach aims to close the insertion point
of the ‘‘loop’’ by directly modifying the conformation of the
AAT molecule.86

Table 1 Specific treatments for a1-antitrypsin (AAT)
deficiency

Therapeutic class
Status of use in humans with AAT
deficiency

Plasma derived
intravenous augmentation

Three manufacturers with approvals in at
least one country
Two manufacturers awaiting approval

Plasma derived
inhaled augmentation

Two manufacturers have tested drugs by
this route
Two additional manufacturers considering
starting

Recombinant/transgenic
augmentation

IV therapy not practical
Two manufacturers considering inhaled
route

Synthetic elastase
inhibitors

Orally bioavailable inhibitors have been
developed by at least six manufacturers
At least four have been tested in humans
None currently being tested in AAT
deficiency

Chaperones and
polymerisation blockers

4-PBA currently under study
Other synthetic chaperones being
developed
Polymerisation blockers not yet in human
trials

Antioxidants
Empirical use of vitamins with antioxidant
potential
Candidate therapeutics near starting
human trials

Gene therapies Gene therapy safety studies about to begin
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Genetic approaches
As a condition caused by well characterised single gene
mutations, the possibility of genetic approaches to mitigate or
cure AAT deficiency have been entertained. Studies have
been reported in which the normal human AAT gene has
been inserted into muscle or liver cells. Novel gene repair
technologies have also been studied. Additionally, considera-
tion has been given to development of agents that can turn
off or disrupt production of the abnormal gene product.
Animal studies at the University of Florida have succeeded

in introducing the normal human AAT gene into striated
muscle cells using an adeno-associated virus vector.87 88 Such
animals maintain potentially therapeutic human AAT levels
in their blood for many months.89 90 Human trials are
expected to begin quite soon. Other approaches using
different vectors and different target organs are being
considered at other centres.91 92

Still, the classic gene therapy approach of introducing a
normal gene into the cells of an individual with a genetic
mutation has some drawbacks in AAT deficiency. The
introduction of a normal gene is not likely to turn off
production of the endogenous abnormal gene product. Thus,
even if prolonged normal gene expression with production of
copious normal AAT can be achieved, this approach would
seem unlikely to be therapeutic to those at risk of liver injury
due to AAT deficiency. A number of methods aimed at
turning off production of the abnormal AAT protein are being
considered. These include the use of antisense oligonucleo-
tides and ribozyme technology to thwart translation of the
mRNA message for the mutant protein.92–95 While cell culture
and animal studies have been promising, the effectiveness of
these approaches in humans is still theoretical.
More speculative still is the concept of gene repair. This

technology was initially designed around chimeraplasty,96

which is the use of chimeric RNA/DNA oligonucleotides to
‘‘patch’’ a single gene mutation. RNA complementary to the
area surrounding the point mutation was synthesised with a
contiguous DNA oligonucleotide made of the corrected
sequence. In model systems, chimeraplast constructs were
capable of correcting targeted single site gene mutations.
While touted in the lay press as a potential cure for fatal
genetic diseases, this technology has not lived up to its early
potential. Currently, this gene repair has advanced beyond
the use of chimeric oligonucleotides. Single stranded bare
DNA oligonucleotides appear to provide more consistent
results in vitro and in vivo than the previously described
methods.97 The use of this technology in the treatment of AAT
deficiency is currently being contemplated.
Stem cell based approaches to AAT deficiency are in their

infancy. Possibilities include modification of an individual’s
stem cells ex vivo to contain the normal AAT gene, then
maturation towards hepatocytes and introduction into the
liver of an affected individual.98

The current status of specific treatments for AAT deficiency
is summarised in table 1.

CONCLUSIONS
Great hope for the treatment of AAT deficiency was born with
the introduction of intravenous augmentation therapy in
1987. While quite popular among those treating lung disease
related to AAT deficiency in countries where this treatment is
approved, its effectiveness is yet to be rigorously proven. In
addition, it has been expensive and in short supply. Newer
augmentation therapies with sources other than plasma and
different routes of administration will be required to provide
evidence of efficacy before regulatory approval. While this
information will be welcome, these trials will be of long
duration and therefore these products may not be available
for years.

The status of more innovative approaches, including gene
therapy and therapeutics aimed at preventing the liver
disease associated with AAT deficiency, has been reviewed.
Since there are many individuals with AAT deficiency who
never develop disease of the lungs or liver, avoidance of
known risk factors such as exposure to tobacco smoke,
frequent lung infections, and exposure to occupational dust
and fumes may be the most effective treatment currently
available.99 It is likely that there are additional genes—yet to
be identified—that alter the likelihood that an individual
with AAT deficiency will develop disease.100 101

Among the approaches described, several may apply to the
general population of individuals with destructive lung or
liver disease. A large percentage of those followed as
‘‘routine’’ COPD have undetected AAT deficiency.8 102 Much
of what we currently know about the pathogenesis of COPD
in general has evolved from our understanding of the lung
disease associated with AAT deficiency. Similarly, our
understanding of conditions caused by protein conforma-
tional abnormalities has been aided by studies of the
synthesis and intracellular trafficking of the AAT molecule.
It is reasonable to assume, therefore, that this hereditary
condition will continue to lead our knowledge towards new
therapeutics for a variety of illnesses.
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Mechanisms of tolerance and Th2 cell activation in asthma
m De Heer HJ, Hammad H, Soullié T, et al. Essential role of lung plasmacytoid dentritic cells in preventing athmatic reactions

to harmless inhaled antigen. J Exp Med 2004;200:89–98

m Ostroukhova M, Seguin-Devaux C, Oriss TB, et al. Tolerance induced by inhaled antigen involves CD4+ T cells expressing

membrane-bound TGF-beta and FOXP3. J Clin Invest 2004;114:28–38

M
ultiple factors are involved in the correct regulation of an immune response to
common antigens. Two studies using asthma models in mice provide an insight into
the immunological mechanisms of T helper 2 (Th2) cell activation in atopic asthma.

There are two subsets of human and mouse dentritic cells (DC): the myeloid (mDC) and
plasmacytoid (pDC) types. de Heer et al show that inhaled antigen is taken up and presented
to draining nodal T cells in the lung by both DCs. On selective depletion of pDCs, inhalation
of a normally inert antigen induces Th2 cell activation and effector cytokine release (IL-5, IL-
10, IL-13, interferon c), goblet cell hyperplasia, eosinophilic airway inflammation, and
specific serum IgE production. However, the adoptive transfer of antigen exposed pDC in
mice before subjecting them to an immunogenic asthma protocol led to tolerance through
inhibition of mDC induced generation of Th2 cells. Atopic asthma may be caused by pDC
dysfunction, but this hypothesis remains to be proven before treatments aimed at
potentiating pDC activity can be considered.
Ostroukhava et al show that FOXP3, a transcription factor, is only present on the surface

of CD4+ T cells in which tolerance has been induced by repeated exposure to a low dose
inhaled antigen. The administration of CD4+ T cells bearing cell surface TGF-b to naı̈ve mice
is shown to induce tolerance to subsequent antigen exposure. In addition, the depletion of
TGF-b+ cells before antigen exposure resulted in proliferation of TGF-b2 cells and Th2
mediated allergic phenotype. The authors suggest that early antigen exposure could induce
tolerance to commonly inhaled antigens in those at risk of allergic disease. However,
important questions remain about the inhibitory pathways through which TGF-b+ cells
induce tolerance, the role of FOXP3, antigen dosing and specificity, and defining the
population predisposed to atopy.
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