Linkage/association study of a locus modulating total serum IgE on chromosome 14q13–24 in families with asthma

A H Mansur, D T Bishop, S T Holgate, A F Markham, J F J Morrison

Background: A study was undertaken to validate a locus modulating total serum IgE levels on 14q13–24.

Methods: A linkage and association study was performed between total serum IgE and a panel of seven microsatellites which map to the 14q13–24 region in 69 families with asthma recruited from Leeds, UK.

Results: Non-parametric, multipoint, sib pair analysis showed no evidence of genetic linkage between the quantitative trait "log IgE" and any of the tested markers. However, a significant association was observed between locus D14S63 (14q23) and total serum IgE (p = 0.017). Allelic analysis showed an association between low total IgE and allele 157 of D14S63 (p = 0.01, OR = 0.63, 95% CI 0.44 to 0.90). Modelling of allele 157 genotypes as a continuous covariate indicated evidence of a significant inverse linear trend across the three genotypes where 157 homozygotes had the lowest mean log IgE (p = 0.045). Association of D14S63 with log IgE was confirmed in the analysis of a combined dataset of 53 families from Southampton, UK and the 69 families from Leeds (total 122 families). An association was observed at the locus level (p = 0.022) and the allelic level where allele 165 showed an association with high total IgE (p = 0.001, OR = 3.79, 95% CI 1.54 to 9.7) and allele 157 showed an association with low total IgE (p = 0.041, OR = 0.77, 95% CI 0.6 to 0.99). The transmission disequilibrium test was positive for allele 157 (p < 0.05) and negative for allele 157 (p > 0.05).

Conclusions: Despite the lack of linkage, the findings of this study support the previous observation of a gene(s) at 14q23 that modulates total serum IgE.
basis of the presence of at least two affected sib pairs with doctor diagnosed asthma or the presence of any two (or more) asthmatic members in the family. The four extended families were derived from three generations. All the recruited families were of white ethnic group except for one nuclear family of five members in which the father was of Asian origin and the mother was white. Fathers were not available for clinical assessment in eight families due to divorce or employment circumstances. One father had married twice and had two children from his first marriage and three from his second marriage. The mother from the first marriage was not available for the study. In the rest of the families another five siblings had moved away from home and did not attend the clinical assessment. In the remaining set, 304 individuals provided blood samples for the DNA analysis, 295 for total serum IgE measurement, and skin prick testing was performed on 304 individuals.

Only children over the age of 5 years were considered suitable for the study because younger children are more difficult to characterise clinically. The mean age of all subjects was 29.2 years (range 5–84). All families contained more than one asthmatic member. Those with doctor diagnosed asthma constituted 39.1% of the studied population.

A full, verbal and written explanation of the study was given to each family member. The study was approved by the ethical committee at St James’s University Hospital. The children gave informed verbal consent and the parents gave informed written consent.

In the second stage of the study we combined the Leeds families with 53 families with asthma recruited from Southampton. The Southampton families included a total of 320 individuals (155 males) and have been previously described elsewhere.

Clinical parameters of Leeds families

Each family member completed a structured written questionnaire (MRC Respiratory Health) on atopic and asthmatic symptoms. Total serum IgE was measured in 295 subjects by the radioimmunoassay method (Pharmacia CAP System IgE RIA). Because of the wide range of the participants’ ages, log total IgE values for all subjects were age/sex adjusted by a linear standardisation to male subjects at 20 years of age. For the purpose of association analysis, total IgE was also analysed as a dichotomy using the age dependent 70th percentile as a cut off level.

In this qualitative trait the age dependent normal range values for total serum IgE (in kU/l) used were as follows: less than 50 for <6 years; less than 100 for 6–16 years; and less than 125 for over 16 years.

The atopic status was determined by measuring skin reactivity to common allergens. Skin prick testing by styllet was performed for 14 common allergens (Dermatophagoides pteronyssinus, Dermatophagoides farinae, mixed grass, mixed trees, Alternaria, Cladosporium, horse, feathers, egg white, egg yolk, cow’s milk, Aspergillus fumigatus, cat fur and dog fur; Bayer Corporation). The major and minor axes of each wheal were recorded. Short acting antihistamines were discontinued for 2 days before the test and long acting antihistamines were discontinued as specified. Atoxy was defined as a positive skin reaction (3 mm or more than negative saline control) to one or more of the 14 tested antigens regardless of total IgE values.

Molecular methods and genotypic data

DNA extraction was performed from peripheral blood leucocytes collected in EDTA-containing tubes using the phenol-chloroform method. DNA was available from 304 individuals who were genotyped for the polymorphic microsatellites D14S49, D14S75, D14S978, D14S276, D14S750, D14S63, and D14S251 which span the 14q13–24 region. The genetic distance between these markers is shown in fig 1. Microsatellite primer sequences, their polymerase chain reaction (PCR) amplification conditions, and genetic location data were retrieved from the Human Genome Data Base (GDB). Primers were purchased from Oswe (University of Southampton, UK). PCR amplification of DNA conditions are as previously described. To confirm accuracy of typing and rule out variation in allele sizing between gels, a control DNA was incorporated in all runs. Data generated by Genotyper software were subsequently analysed by the Genetic Analysis System (GAS) program. Inconsistency in allele designation within families was checked by the program and ambiguities were resolved by further genotyping. Haplotypes were also constructed for all families studied. Two point LOD scores between the markers and marker order were determined using the Vitesse Engine Routine of GAS which provided similar results to published maps of 14q. In the first stage of the study, linkage and association between the seven microsatellite markers and total serum IgE were tested in the Leeds families. Linkage analysis for the quantitative trait, log IgE, was conducted using multipoint quantitative sib pair analysis. Association analysis was conducted using the Vitesse Engine Routine of GAS which provided similar results to published maps of 14q.
performed using χ^2 tests for the qualitative trait, total serum IgE. Further association analysis between total serum IgE and D14S63 was conducted on a combined dataset comprising families from Leeds and Southampton.

Multipoint quantitative sib pair analysis

Data were analysed using the GAS package version 2.0 (Alan Young, University of Oxford). For the quantitative locus IgE, in the absence of a specified genetic model, non-parametric linkage analysis was performed using the Elston-Haseman algorithm. In this method siblings sharing marker alleles near the quantitative locus are more likely to have similar quantitative values than the non-sharing siblings. The mean value of the difference between siblings should decrease as the fraction of alleles shared increases. A slope is generated by a least squares fit using allele sharing as the independent variable and trait difference as the dependent variable. A significant slope would indicate linkage. Data analysis was performed using the SIBIHE routine of GAS. This routine combines the Elston-Haseman algorithm with sib pair interval mapping and has been described elsewhere.

Association analysis

Association analysis was performed using the SPSS (7.0) statistical package (SPSS 7.0 1995 for VAX/VMS, SPSS Inc, USA). Data were initially analysed at the locus level. Significantly associated loci were subsequently subjected to allelic association tests to identify the associated allele. The Monte Carlo simulation test was conducted to evaluate the significance of positive results obtained using multi-allelic marker.

Table 1 Correlation matrix for log total serum IgE and IgE dependent phenotypes in the Leeds families

<table>
<thead>
<tr>
<th></th>
<th>Asthma</th>
<th>Atopy</th>
<th>IgE</th>
<th>Df</th>
<th>Dp</th>
<th>Grass</th>
<th>Cat</th>
<th>Alternaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td>1.00</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.44</td>
<td>0.30</td>
<td>0.38</td>
<td>0.16</td>
</tr>
<tr>
<td>Atopy</td>
<td>1.00</td>
<td>0.58</td>
<td>0.63</td>
<td>0.71</td>
<td>0.81</td>
<td>0.62</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>IgE</td>
<td>1.00</td>
<td>1.00</td>
<td>0.48</td>
<td>0.53</td>
<td>0.50</td>
<td>0.50</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Df</td>
<td>1.00</td>
<td>0.86</td>
<td>0.50</td>
<td>0.60</td>
<td>0.60</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dp</td>
<td>1.00</td>
<td>0.56</td>
<td>0.55</td>
<td>0.68</td>
<td>0.68</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass</td>
<td>1.00</td>
<td>0.56</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat</td>
<td>1.00</td>
<td>0.56</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria</td>
<td>1.00</td>
<td>1.00</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

Clinical assessment of Leeds families

Data analysis was based on the 69 families (total 320 members, 175 males). Clinical data were obtained from 304 participants and DNA genotyping was successful in 295. Total serum IgE distribution was skewed with levels ranging from <2 to >2000 kU/l (mean (SD) 409.3 (179.9)). Nineteen subjects had a total IgE of >2000 kU/l (16 children and three parents) while seven subjects had a total IgE of <2 kU/l (three children and four parents). In these cases the IgE level was assumed to be 2000 kU/l or 2 kU/l, respectively. All but one of the subjects with >2000 IgE were asthmatic (94.7%) compared with an overall average of asthma prevalence in the Leeds families of 59.1%. They also had an increased mean number of wheeze episodes in the preceding 12 months (7.6 per year) and 57.9% suffered previous severe attacks that required hospital admission. The prevalence of eczema and rinitis were also markedly increased (73.7% and 80%, respectively).

In the Leeds families there was a higher proportion of asthmatics among children than in the other age groups and there was close correlation between asthma, atopy, log IgE, and specific skin reactivity to common allergens (table 1). Using “doctor diagnosed asthma” as the dependent variable, we conducted forward multiple logistic regression analysis in a model that included age, sex, log(e) IgE (age uncorrected), and the traits *D pteronyssinus*, *D farinae*, mixed grass and cat positive skin test reactivity as well as atopy. The best fit model for asthma was that including log(e) IgE (p = 0.002), *D farinae* (p = 0.000), and age (p = 0.000).

Multipoint sib pair analysis in Leeds families

Table 2 shows the results of the multipoint sib pair analysis for the seven loci and provides evidence against linkage between any of these loci and log IgE. These results remained
Linkage/association study for IgE locus on 14q13-24

Not observed in these families. D14S63 allele frequency in the observed 10 common and rare alleles. The rare allele 153 was an index of 0.79. In the Leeds and Southampton families we the D14S63 microsatellite has 11 alleles and a heterozygosity dataset.

Association analysis of D14S63 in the combined level of mean log IgE (p = 0.045, fig 2).

Relationship in which allele 157 homozygotes had the lowest allele 157 genotypes against log IgE revealed a linear inverse (odds ratio (OR) 0.63 (95% CI 0.44 to 0.9), p = 0.01). Plotting shows significant association between allele 157 and total IgE Association analysis between D14S63 alleles and total IgE Allelic association analysis in Leeds families

Locus association analysis in Leeds families

Association analysis between D14S63 alleles and total IgE with the qualitative trait “total IgE” at a level of p = 0.017. However, marker D14S63 showed significant association with the qualitative trait “total IgE” at a level of p = 0.007 (Bonferroni correction for seven tests). None of the markers analysed showed association at the p = 0.01 level. None of the markers analysed showed association at the p = 0.007 level (Bonferroni correction for seven tests).

Association analysis of D14S63 in the combined dataset

The D14S63 microsatellite has 11 alleles and a heterozygosity index of 0.79. In the Leeds and Southampton families we observed 10 common and rare alleles. The rare allele 153 was not observed in these families. D14S63 allele frequency in the unchanged even when families with incomplete parental genotype data were excluded from the analysis (data not shown).

Locus association analysis in Leeds families

Table 3 shows the results of association analyses at the locus level. None of the markers analysed showed association at the p = 0.007 level (Bonferroni correction for seven tests). However, marker D14S63 showed significant association with the qualitative trait “total IgE” at a level of p = 0.017.

Allelic association analysis in Leeds families

Association analysis between D14S63 alleles and total IgE shows significant association between allele 157 and total IgE (odds ratio (OR) 0.63 (95% CI 0.44 to 0.9), p = 0.01). Plotting allele 157 genotypes against log IgE revealed a linear inverse relationship in which allele 157 homozygotes had the lowest level of mean log IgE (p = 0.045, fig 2).

Association analysis of D14S63 in the combined dataset

The D14S63 microsatellite has 11 alleles and a heterozygosity index of 0.79. In the Leeds and Southampton families we observed 10 common and rare alleles. The rare allele 153 was not observed in these families. D14S63 allele frequency in the

Table 2

<table>
<thead>
<tr>
<th>Location (cM)</th>
<th>Marker</th>
<th>M</th>
<th>C</th>
<th>Intercept</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>D14549</td>
<td>0.10</td>
<td>0.81</td>
<td>-7.9</td>
<td>0.71</td>
</tr>
<tr>
<td>0.12</td>
<td>D14575</td>
<td>-0.03</td>
<td>0.95</td>
<td>36</td>
<td>0.45</td>
</tr>
<tr>
<td>0.20</td>
<td>D145978</td>
<td>-0.12</td>
<td>1.00</td>
<td>8.4</td>
<td>0.26</td>
</tr>
<tr>
<td>0.26</td>
<td>D145275</td>
<td>-0.04</td>
<td>0.96</td>
<td>24</td>
<td>0.42</td>
</tr>
<tr>
<td>0.61</td>
<td>D14750</td>
<td>-0.06</td>
<td>0.97</td>
<td>17</td>
<td>0.39</td>
</tr>
<tr>
<td>0.34</td>
<td>D14563</td>
<td>0.10</td>
<td>0.83</td>
<td>-8.1</td>
<td>0.7</td>
</tr>
<tr>
<td>0.36</td>
<td>D145251</td>
<td>-0.02</td>
<td>0.94</td>
<td>41</td>
<td>0.45</td>
</tr>
</tbody>
</table>

The analysis is based on 107 sib pairs (mean SD age 16.75 (8.84) years, range 6.0–52). The genetic distance by recombination fraction between the markers was estimated from the genotype data in these families using the Vitesse Engine Routine of GAS. Regression by the least square fitting formula: D = M Sh+C where D is the difference in log IgE values of siblings, Sh is the alleles shared. M< 0 = > increased sharing tend to reduce D. Intercept is value Sh satisfying D=M Sh+C. The results show evidence against linkage between the analysed markers and log IgE.

Table 3

<table>
<thead>
<tr>
<th>Locus (alleles)</th>
<th>Allele</th>
<th>Frequency</th>
<th>No (% IgE+)</th>
<th>(\chi^2)</th>
<th>df</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D14S49 (13)</td>
<td>116</td>
<td>53/90 (59%)</td>
<td>122</td>
<td>124</td>
<td>128</td>
<td>134</td>
</tr>
<tr>
<td>D14S63 (10)</td>
<td>172</td>
<td>32/59 (54%)</td>
<td>174</td>
<td>180</td>
<td>182</td>
<td>186</td>
</tr>
<tr>
<td>D14S75 (8)</td>
<td>231</td>
<td>39/69 (57%)</td>
<td>248</td>
<td>250</td>
<td>252</td>
<td>254</td>
</tr>
<tr>
<td>D14S251 (11)</td>
<td>87</td>
<td>32/44 (72%)</td>
<td>89</td>
<td>91</td>
<td>93</td>
<td>95</td>
</tr>
<tr>
<td>D14S63 (10)</td>
<td>152</td>
<td>76/138 (55%)</td>
<td>156</td>
<td>160</td>
<td>164</td>
<td>168</td>
</tr>
<tr>
<td>D14S978 (11)</td>
<td>157</td>
<td>99/215 (46%)</td>
<td>159</td>
<td>161</td>
<td>163</td>
<td>167</td>
</tr>
<tr>
<td>D14S251 (11)</td>
<td>300</td>
<td>97/186 (52%)</td>
<td>302</td>
<td>304</td>
<td>310</td>
<td>Rare alleles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locus (alleles)</th>
<th>Allele</th>
<th>Frequency</th>
<th>No (% IgE+)</th>
<th>(\chi^2)</th>
<th>df</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D14S49 (13)</td>
<td>116</td>
<td>53/90 (59%)</td>
<td>122</td>
<td>124</td>
<td>128</td>
<td>134</td>
</tr>
<tr>
<td>D14S63 (10)</td>
<td>172</td>
<td>32/59 (54%)</td>
<td>174</td>
<td>180</td>
<td>182</td>
<td>186</td>
</tr>
<tr>
<td>D14S75 (8)</td>
<td>231</td>
<td>39/69 (57%)</td>
<td>248</td>
<td>250</td>
<td>252</td>
<td>254</td>
</tr>
<tr>
<td>D14S251 (11)</td>
<td>87</td>
<td>32/44 (72%)</td>
<td>89</td>
<td>91</td>
<td>93</td>
<td>95</td>
</tr>
<tr>
<td>D14S63 (10)</td>
<td>152</td>
<td>76/138 (55%)</td>
<td>156</td>
<td>160</td>
<td>164</td>
<td>168</td>
</tr>
<tr>
<td>D14S978 (11)</td>
<td>157</td>
<td>99/215 (46%)</td>
<td>159</td>
<td>161</td>
<td>163</td>
<td>167</td>
</tr>
<tr>
<td>D14S251 (11)</td>
<td>300</td>
<td>97/186 (52%)</td>
<td>302</td>
<td>304</td>
<td>310</td>
<td>Rare alleles</td>
</tr>
</tbody>
</table>

The analysis is based on 107 sib pairs (mean SD age 16.75 (8.84) years, range 6.0–52). The genetic distance by recombination fraction between the markers was estimated from the genotype data in these families using the Vitesse Engine Routine of GAS. Regression by the least square fitting formula: D = M Sh+C where D is the difference in log IgE values of siblings, Sh is the alleles shared. M< 0 = > increased sharing tend to reduce D. Intercept is value Sh satisfying D=M Sh+C. The results show evidence against linkage between the analysed markers and log IgE.
complete D14S63 genotypes and IgE measurement data). Using χ² tests for the qualitative trait (total IgE), the D14S63 locus showed an association with total IgE (p = 0.022). Similar results were obtained using the non-parametric Kruskal-Wallis test for the quantitative trait log IgE (χ² = 15.3, df = 7, p = 0.033). Allelic analysis showed a significant association between allele 165 and high mean log IgE (p = 0.0018) and between allele 157 and low mean log IgE (p = 0.041, table 4).

The transmission disequilibrium test for the qualitative IgE trait was positive for allele 165 (transmitted from a parent to affected child in 16 cases and non-transmitted in six cases (p < 0.05)). However, the transmission disequilibrium test for allele 157 was negative. Similarly, the quantitative trait log IgE showed positive TDT for allele 165 but not 157. The QTDT allele 165 had significant association with high mean IgE while allele 157 had significant association with low mean IgE. The transmission disequilibrium test was positive for allele 165 but not for allele 157. The results of the study are therefore in agreement with our previous finding of a gene(s) modulating total serum IgE at 14q23.

The two sets of families were recruited along similar criteria and are similar in terms of age structure, percentage of asthmatics, and mean total IgE levels. The lack of linkage in the Leeds families is unlikely to be caused by clinical differences from Southampton families. Replication of genetic linkage in complex traits has proved difficult due to disease heterogeneity and methodological difficulties. Lack of power due to the relatively small number of families examined is a likely cause here, since replication of linkage to a heterogeneous trait would require an emphatically larger number of families than those originally studied.

DISCUSSION

Using linkage and association approaches we have explored the reproducibility of our previous report of linkage and association of total serum IgE to the 14q13–24 region in an independent set of families with asthma recruited from Leeds. We observed no evidence of linkage with any of the examined markers. However, at the locus level, marker D14S63 alone showed significant association with total IgE. Allelic analysis revealed significant association of D14S63 allele 157 with total IgE. Plotting the latter allele genotypes against log IgE demonstrated a significant inverse linear relationship. D14S63 locus association with total IgE was also observed in analysis of a combined dataset of families recruited from both Leeds and Southampton. In these families, allele 165 had significant association with high mean IgE while allele 157 had significant association with low mean IgE. The transmission disequilibrium test was positive for allele 165 but not for allele 157. The results of this study are therefore in agreement with our previous finding of a gene(s) modulating total serum IgE at 14q23.

![Figure 3](https://www.thoraxjnl.com)

Figure 3 Chromosome 14q23–24 map showing the cytogenetic regions, the corresponding relative positions and order of microsatellites, and some of the local candidate genes. The relative positions of the microsatellites and the candidate genes are based on data obtained from the Genetic Location Data Base (LDB) (http://cedar.genetics.soton.ac.uk/public_html/ldb.html) and the Ensembl Data Base (www.ensamble.org). The positively linked microsatellites to asthma in the study by Hakonarson et al are underlined and their relative position to microsatellite D14S63 is illustrated. HIF1A, hypoxia inducible factor-1α; RBM8, RNA binding motif protein 8A; ZFP46, zinc finger protein 46; MAX, oncogene myc-associated protein; MNAT1, ménage à trois 1; ECP, eosinophilic cationic protein; ADAM20-21, a disintegrin and metallopeptidase domain 20 and domain 21; GPX2, glutathione peroxidase; HSPA2, heat shock 70 kDa protein 2; BCRP1, breakpoint cluster region protein 1; ARG2, arginase II; TGF-β3, transforming growth factor β3.
contrast, association studies are considered more powerful than linkage studies as they involve direct analysis of polymorphism within a gene of interest or of markers in strong linkage disequilibrium with such a gene.42 However, a significant result should be interpreted with caution. Statistical association could result from a causal relationship between an expressed marker allele and the pathogenesis of disease; linkage disequilibrium between the marker locus and an unobserved susceptibility locus; or a false association secondary to population stratification or admixture. In the current studies we used unaffected individuals from asthmatic families as internal controls to overcome any stratification related confounders. In addition, we observed no evidence for “in between” family stratification in either set of families which enhances the validity of the general allelic association approach adopted in this study. The use of multiple, highly polymorphic markers is more informative, but inevitably increases the number of comparisons performed to test for an association. We limited the total number of tests performed by conducting a single test of association for each microsatellite (total of seven tests). Within each locus, rare alleles of <3% frequency were combined and analysed as a single trait to reduce the total number of allelic classes.

Only locus D14S63 had evidence of association at the empirical significance level of p<0.05. We considered this result significant as it constitutes a primary hypothesis. D14S63 is a highly polymorphic microsatellite comprised of 11 alleles with a heterozygosity index of 0.79. The common allele 157 (frequency = 0.43) showed association with low mean log IgE in the Leeds families and the rare allele 165 (frequency = 0.025) showed association with high mean log IgE in the Southampton families.33 The mean log IgE level in allele 157(+) subjects was concordant in the two sets of families and was significantly lower than that of allele 165(+) subjects. In the total population the mean log IgE in allele families and was significantly lower than that of allele 165(+) subjects. The common 157 allele may therefore be in linkage disequilibrium with a wild-type allele resulting in low total serum IgE while the rare 165 allele may be in linkage disequilibrium with a mutant allele that encodes a protein causing high total serum IgE.

In addition to our data, a recent genome screen of 175 extended Icelandic families by Hakonarson et al43 using 976 microsatellites has reported a common region on chromosome 14q23–24. However, although our population is comprised of families with asthma, the linkage/association we observed is with total IgE rather than asthma. Figure 3 illustrates the cytotgenetic map of chromosome 14q23–24 and depicts the relative position of microsatellites used in this study and those in the study by Hakonarson et al43. This region contains numerous genes that contribute to the control of IgE and susceptibility to asthma, including the ADAM20-21, ECP, and TGFp1. Further fine mapping of the region and analysis of these candidate genes is now required to isolate and confirm the culprit gene.

In conclusion, this study presents further evidence for a significant association (but no linkage) between the D14S63 locus and IgE. The findings of this study support our previous observation of a gene(s) at 14q23 that modulates total serum IgE.

ACKNOWLEDGEMENTS

This paper is dedicated to the memory of J F J Morrison. The authors thank the families from Leeds and Southampton for their generous participation in this study; David Campbell, Sarah Perry and Melanie Shatrath at the Molecular Medicine Unit, St James’s University Hospital, Leeds for assistance with the characterisation of the Leeds families; Grange Williams and Alexander Turner for help with genotyping; Patricia Purzyck and H C Gooi for kindly performing total serum IgE measurement, and the genetics team at Southampton General Hospital led by Newton Morton for providing clinical information and DNA on the Southampton families.

Authors’ affiliations

A H Mansur, Respiratory Department, Birmingham Heartlands Hospital, Birmingham B9 5SS, UK
D T Bishop, ICRF, Genetic Epidemiology Laboratory, St James’s University Hospital, Leeds, UK
S T Holgate, Medical Specialties (RCMB), Southampton General Hospital, Southampton, UK
A F Markham, Molecular Medicine Unit, University of Leeds, Clinical Sciences Building, St James’s University Hospital, Leeds, UK
J F J Morrison (deceased), AstraZeneeca, Macclesfield, Cheshire, UK

Work in the authors’ laboratory was supported by the National Asthma Campaign, MRC, Imperial Cancer Research Fund, and Yorkshire Cancer Research.

REFERENCES

Linkage/association study of a locus modulating total serum IgE on chromosome 14q13–24 in families with asthma

A H Mansur, D T Bishop, S T Holgate, A F Markham and J F J Morrison (deceased)

Thorax 2004 59: 876-882
doi: 10.1136/thx.2003.014092

References
This article cites 43 articles, 8 of which you can access for free at: http://thorax.bmj.com/content/59/10/876#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Molecular genetics (211)
Asthma (1782)
Genetic screening / counselling (88)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/