Pulmonary function abnormalities in children with sickle cell disease

K P Sylvester, R A Patey, P Milligan, M Dick, G F Rafferty, D Rees, S L Thein, A Greenough

Background: Adults with sickle cell disease (SCD) have restrictive lung function abnormalities which are thought to result from repeated lung damage caused by episodes of pulmonary vaso-occlusion; such episodes start in childhood. A study was therefore undertaken to determine whether children with SCD have restrictive lung function abnormalities and whether the severity of such abnormalities increases with age.

Methods: Sixty four children with SCD aged 5–16 years and 64 ethnic matched controls were recruited. Weight and sitting and standing height were measured, and lung function was assessed by measurement of lung volumes and forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF) before and after bronchodilator.

Results: Compared with the control subjects, the children with SCD had lower mean (SD) sitting height (69 (6.3) cm v 73 (7.7) cm; p = 0.004), sitting standing height ratio (0.50 (0.02) v 0.51 (0.01); p<0.0001), weight (33 (10.9) kg v 41 (14.9) kg; p = 0.001), functional residual capacity measured by a helium gas dilution technique (1.2 (0.3) l v 1.3 (0.4); p = 0.04), FEV1 (1.5 (0.5) l v 1.9 (0.7); p = 0.0008), FVC (1.7 (0.6) l v 2.1 (0.8); p = 0.001), and PEF (3.9 (1.3) l/s v 4.8 (1.5) l/s; p = 0.0004). The effect of age on lung function differed significantly between the children with SCD and the controls for total lung capacity and vital capacity measured by plethysmography and functional residual capacity measured by helium gas dilution.

Conclusion: Lung function differs significantly in children with SCD compared with ethnic matched controls of a similar age. Our results suggest that restrictive abnormalities may become more prominent with increasing age.

Sickle cell disease (SCD) is the most common inherited disorder affecting African and Caribbean populations. Each year 200 000–250 000 children are born with SCD. Young adults have restrictive lung function abnormalities which are thought to be the result of repeated lung damage associated with episodes of pulmonary vaso-occlusion. Such episodes start in childhood, so it is likely that restrictive lung function abnormalities might be found in children with SCD and that the severity of such abnormalities would increase with age. It is important to test this hypothesis because, if proven, it would have implications regarding the age at which to start aggressive treatment aimed at preventing chronic lung damage. To date, however, studies of lung function in children with SCD have yielded conflicting results. Only one study has shown restrictive abnormalities, while others have found either obstructive abnormalities or no abnormalities. The key to accurate documentation of lung function abnormalities is comparison with the results from ethnic matched controls of a similar age; both age and ethnicity affect lung function.

This study was therefore undertaken to compare lung function in children with SCD and in age and ethnic matched controls, and to determine whether any abnormalities found were influenced by age.
analysed. Lung volume was assessed by measurement of functional residual capacity using a helium gas dilution technique (FRCHe) (Morgan TLC, Morgan Medical) and by whole body plethysmography (FRCpleth). Total lung capacity (TLCpleth), vital capacity (VCpleth), and residual volume (RVpleth) were also measured by whole body plethysmography. Measurements were performed at least twice and the mean of values within 10% of each other recorded. The ratio between FRCHe and FRCpleth (FRCHe:FRCpleth) was calculated to determine the presence of airway gas trapping.7 Following completion of the tests, a bronchodilator (200 µg salbutamol administered via a Volumatic spacer device (Allen & Hanburys, UK)) was given and FEV1, FVC, FEV1/FVC, and PEF were remeasured after 20 minutes. All results were calculated to body temperature, pressure, saturated conditions. The lung function test results were expressed as a corrected to body temperature, pressure, saturated conditions.

Table 1: Comparison of patient characteristics and lung volumes between children with SCD and controls

<table>
<thead>
<tr>
<th></th>
<th>SCD (n = 64)</th>
<th>Control (n = 64)</th>
<th>Mean difference (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>10 (2.4)</td>
<td>10 (2.5)</td>
<td>-0.1 (-0.9 to 0.8)</td>
<td>0.7</td>
</tr>
<tr>
<td>Standing height (cm)</td>
<td>139 (13.9)</td>
<td>142 (16.2)</td>
<td>3.3 (-2.0 to 8.5)</td>
<td>0.2</td>
</tr>
<tr>
<td>Sitting height (cm)</td>
<td>69 (6.3)</td>
<td>73 (7.7)</td>
<td>3.7 (1.2 to 6.1)</td>
<td>0.004</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>33 (10.9)</td>
<td>41 (14.9)</td>
<td>7.6 (3.0 to 12.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>Sitting percentage</td>
<td>0.50 (0.02)</td>
<td>0.51 (0.01)</td>
<td>0.02 (0.01 to 0.02)</td>
<td><0.0001</td>
</tr>
<tr>
<td>TLCpleth</td>
<td>2.7 (0.6)</td>
<td>2.8 (0.8)</td>
<td>0.2 (-0.1 to 0.4)</td>
<td>0.3</td>
</tr>
<tr>
<td>RVpleth</td>
<td>0.8 (0.3)</td>
<td>0.8 (0.3)</td>
<td>0.0 (-0.1 to 0.1)</td>
<td>0.5</td>
</tr>
<tr>
<td>VCpleth</td>
<td>1.8 (0.6)</td>
<td>2.0 (0.7)</td>
<td>0.2 (0.0 to 0.4)</td>
<td>0.1</td>
</tr>
<tr>
<td>FRCpleth</td>
<td>1.5 (0.4)</td>
<td>1.6 (0.5)</td>
<td>0.1 (-0.1 to 0.2)</td>
<td>0.4</td>
</tr>
<tr>
<td>FRCHe</td>
<td>1.2 (0.3)</td>
<td>1.3 (0.4)</td>
<td>0.1 (0.0 to 0.3)</td>
<td>0.04</td>
</tr>
<tr>
<td>FRCHe:FRCpleth</td>
<td>0.8 (0.2)</td>
<td>0.8 (0.2)</td>
<td>0.0 (0.0 to 0.1)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Data are presented as mean (SD) unless stated otherwise.

Analysis of data

Data were tested for normality using Kolmogorov-Smirnov and found to be normally distributed. Differences were assessed for statistical significance using the independent samples t test. Analysis of variance was performed with sickle cell status as a factor, height and age as covariates, and the interactions of sickle cell status with height and age in the model. Non-significant terms were removed one at a time from each model in backwards elimination. Statistical analysis was performed using SPSS software (SPSS Inc, Illinois, USA).

Sample size

Recruitment of 64 children into each group allowed detection, with 80% power at the 5% level, of a difference in the lung function results between the two groups of 0.5 standard deviations of each measurement. The standard deviations of FEV1 were 0.06 l, FVC 0.06 l, FEV1/FVC 2.4%, FRChE 0.08 l, PEF 0.3 l/s, TLCpleth 0.1 l, RVpleth 0.1 l, and FRChE 0.1 l.

Patients

Sixty four children with SCD (34 girls) and 64 controls (34 girls) of mean age 10 years (range 5–16) were recruited. Thirty one of the children were aged between 10 and 16 years. Six of the children with SCD and 12 of the controls were known asthmatics; five and seven, respectively, were taking regular anti-asthma medication. Seven of the children with SCD had been previously admitted to hospital because of an acute chest syndrome.

Table 2: Comparison of spirometric measurements before and after bronchodilator in children with SCD and controls

<table>
<thead>
<tr>
<th></th>
<th>SCD</th>
<th>Controls</th>
<th>Mean difference (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1</td>
<td>1.5 (0.5)</td>
<td>1.9 (0.7)</td>
<td>0.4 (0.2 to 0.6)</td>
<td>0.0008</td>
</tr>
<tr>
<td>Prebronchodilator</td>
<td>1.6 (0.5)</td>
<td>2.0 (0.7)</td>
<td>0.4 (0.1 to 0.6)</td>
<td>0.002</td>
</tr>
<tr>
<td>% change</td>
<td>5 (11.5)</td>
<td>4 (10.0)</td>
<td>-0.8 (-4.7 to 3.1)</td>
<td>0.7</td>
</tr>
<tr>
<td>Postbronchodilator</td>
<td>1.7 (0.6)</td>
<td>2.1 (0.8)</td>
<td>0.4 (0.2 to 0.7)</td>
<td>0.001</td>
</tr>
<tr>
<td>% change</td>
<td>2 (8.9)</td>
<td>3 (8.2)</td>
<td>0.9 (-2.1 to 3.9)</td>
<td>0.5</td>
</tr>
<tr>
<td>FVC</td>
<td>1.7 (0.6)</td>
<td>2.1 (0.8)</td>
<td>0.4 (0.1 to 0.6)</td>
<td>0.004</td>
</tr>
<tr>
<td>Prebronchodilator</td>
<td>1.8 (0.6)</td>
<td>2.1 (0.8)</td>
<td>0.4 (0.1 to 0.6)</td>
<td>0.004</td>
</tr>
<tr>
<td>% change</td>
<td>2 (8.9)</td>
<td>3 (8.2)</td>
<td>0.9 (-2.1 to 3.9)</td>
<td>0.5</td>
</tr>
<tr>
<td>Postbronchodilator</td>
<td>90 (8.5)</td>
<td>91 (8.3)</td>
<td>0.6 (-2.4 to 3.6)</td>
<td>0.7</td>
</tr>
<tr>
<td>% change</td>
<td>2 (7.0)</td>
<td>1 (7.1)</td>
<td>-1.5 (-4.0 to 1.1)</td>
<td>0.3</td>
</tr>
<tr>
<td>PEF</td>
<td>3.9 (1.3)</td>
<td>4.8 (1.5)</td>
<td>0.9 (0.4 to 1.4)</td>
<td>0.0004</td>
</tr>
<tr>
<td>Prebronchodilator</td>
<td>4.3 (1.4)</td>
<td>5.0 (1.7)</td>
<td>0.7 (0.2 to 1.3)</td>
<td>0.009</td>
</tr>
<tr>
<td>% change</td>
<td>11 (21.0)</td>
<td>6 (11.7)</td>
<td>-4.5 (-10.5 to 1.5)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Data are presented as mean (SD) unless stated otherwise.
Pulmonary function abnormalities in sickle cell disease

RESULTS

Compared with the controls, the children with SCD had lower sitting height (p = 0.004), sitting:standing height (p < 0.0001), and weight (p = 0.001, table 1). The children with SCD had lower FRCHe (p = 0.04, table 1), FEV₁ (p = 0.0008), FVC (p = 0.001) and PEF (p = 0.0004), but their FEV₁/FVC ratios were not significantly different from those of the controls (table 2). These significant differences remained after bronchodilator treatment, but the changes in FEV₁, FVC and PEF in response to bronchodilator did not differ significantly between the two groups (table 2).

Restrictive and/or obstructive abnormalities were only found in children over 10 years of age. Four children had a restrictive abnormality, three an obstructive abnormality, and two mixed restrictive/obstructive abnormalities. Two of the children with abnormalities (one with an obstructive abnormality) had a positive response to treatment with a β agonist bronchodilator.

The effect of age on lung function differed significantly between children with SCD and controls with regard to TLCpleth, VCpleth, and FRCH (fig 1, table 3).

DISCUSSION

We have shown that, compared with control children of a similar age and ethnic origin, children with SCD had significantly lower mean FRCHe, FEV₁, FVC, and PEF. All the patients included in this study were homozygous HbSS, the commonest and most severe form of SCD. 12 13 However, the mean results for the children with SCD were not outside the normal range and very few had sufficiently impaired lung function to be classified as having obstructive or restrictive abnormalities. It should be noted that, to diagnose restrictive and obstructive abnormalities, comparison was made with reference ranges established using the results of children of white ethnic origin. Use of such reference ranges may have resulted in underdiagnosis or misdiagnosis of lung function abnormalities.

It has previously been reported that children with SCD may have increased hyperreactivity when assessed by cold air challenge. 14 However, we did not find that the children with SCD had significantly greater bronchodilator responsiveness than controls. In response to bronchodilator administration there was only a small non-significant improvement in lung function in the children with SCD, and their post-bronchodilator results remained significantly lower than those of the controls (table 2). The results of this study therefore suggest that the children with SCD had mild restrictive defects. Our data agree with the findings of Pianosi et al who showed that children with SCD had significantly lower FEV₁ and FVC than controls matched for sex, race and height, but similar FEV₁/FVC. They also reported that the children with SCD had significantly lower TLCpleth, but they were on average older than those included in the present study.

It is important to compare the results of SCD children with those of ethnic matched controls. We have previously shown that 3–9 year old children of African or Caribbean origin were taller, heavier, and had a higher body mass index than white children of a similar age. 15 In this study we therefore recruited controls matched for ethnic origin and related their results and those of the SCD children to the same reference ranges. The body configuration of the children with SCD differed significantly from that of the matched controls, and these differences were
particularly marked if only the older children were considered. This finding is consistent with the suggestion that the effect of SCD becomes greater with increasing age. However, children with SCD enter puberty later than those without SCD.16 17 Pubertal staging was not undertaken in this study so we cannot exclude the possibility that the greater differences in body configuration noted in the older children were the result of delayed puberty in the children with SCD.

To determine whether the effect of age on lung function differed significantly between children with SCD and controls, analysis of variance was carried out with height and age as covariates and the interactions of sickle cell status and ethnic origin. These results have implications for the timing of commencement of treatment aimed at reducing chronic pulmonary morbidity in patients with SCD.

In conclusion, the lung function of children with SCD differed significantly from that of controls matched for age and ethnic origin. These results have implications for the timing of commencement of treatment aimed at reducing chronic pulmonary morbidity in patients with SCD.

Authors’ affiliations
K P Sylvester, R A Patey, M Dick, G F Rafferty, A Greenough, Department of Child Health, Guy’s, King’s & St Thomas’ School of Medicine, King’s College, London, UK
P Milligan, Department of Health and Life Sciences, Guy’s, King’s & St Thomas’ School of Medicine
D Rees, S L Thein, Department of Haematological Medicine, Guy’s, King’s & St Thomas’ School of Medicine

REFERENCES
Pulmonary function abnormalities in children with sickle cell disease

K P Sylvester, R A Patey, P Milligan, M Dick, G F Rafferty, D Rees, S L Thein and A Greenough

Thorax 2004 59: 67-70

Updated information and services can be found at:
http://thorax.bmj.com/content/59/1/67

These include:

References
This article cites 16 articles, 8 of which you can access for free at:
http://thorax.bmj.com/content/59/1/67#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Airway biology (1100)
Lung function (773)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/