Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease

W D-C Man, M G G Soliman, D Nikoletou, M L Harris, G F Rafferty, N Mustfa, M I Polkey, J Moxham

Background: Although quadriceps weakness is well recognised in chronic obstructive pulmonary disease (COPD), the aetiology remains unknown. In disabled patients the quadriceps is a particularly underused muscle and may not reflect skeletal muscle function as a whole. Loss of muscle function is likely to be equally distributed if the underlying pathology is a systemic abnormality. Conversely, if deconditioning and disuse are the principal aetiologic factors, weakness would be most marked in the lower limb muscles.

Methods: The non-volitional technique of supramaximal magnetic stimulation was used to assess twitch tensions of the adductor pollicis, quadriceps, and diaphragm muscles (TwAP, TwQ, and TwPdi) in 22 stable non-weight losing COPD patients and 18 elderly controls.

Results: Mean (SD) TwQ tension was reduced in the COPD patients (7.1 (2.2) kg v 10.0 (2.7) kg; 95% confidence intervals (CI) –4.4 to –1.4; p<0.001). Neither TwAP nor TwPdi (when corrected for lung volume) differed significantly between patients and controls (mean (SD) TwAP 6.52 (1.90) N for COPD patients and 6.80 (1.99) N for controls (95% CI –1.5 to 0.97, p=0.65; TwPdi 23.0 (5.6) cm H₂O for COPD patients and 23.5 (5.2) cm H₂O for controls (95% CI –4.5 to 3.5, p=0.81).

Conclusions: The strength of the adductor pollicis muscle (and the diaphragm) is normal in patients with stable COPD whereas quadriceps strength is substantially reduced. Disuse may be the principal factor in the development of skeletal muscle weakness in COPD, but a systemic process preferentially affecting the proximal muscles cannot be excluded.
Anthropometric and lung function measurements in study participants

<table>
<thead>
<tr>
<th></th>
<th>Healthy elderly (n=18)</th>
<th>COPD patients (n=22)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>74.6 (6.3)</td>
<td>68.6 (8.9)</td>
<td>0.02</td>
</tr>
<tr>
<td>Height [m]</td>
<td>1.66 (0.13)</td>
<td>1.67 (0.10)</td>
<td>0.91</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>72.7 (13.3)</td>
<td>72.8 (20.4)</td>
<td>0.99</td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>26.2 (3.8)</td>
<td>26.2 (6.3)</td>
<td>0.98</td>
</tr>
<tr>
<td>Fat free mass [kg]</td>
<td>44.9 (9.0)</td>
<td>47.7 (10.4)</td>
<td>0.44</td>
</tr>
<tr>
<td>FEV₁, (l)</td>
<td>2.6 (0.4)</td>
<td>0.9 (0.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>FEV₁ (% pred)</td>
<td>101 (8)</td>
<td>38 (13)</td>
<td><0.0001</td>
</tr>
<tr>
<td>FEV₁/VC [%]</td>
<td>75.6</td>
<td>37.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>TLO (% pred)</td>
<td></td>
<td>116.9 (18.0)</td>
<td></td>
</tr>
<tr>
<td>RV (% pred)</td>
<td></td>
<td>186.3 (48)</td>
<td></td>
</tr>
<tr>
<td>TLC (% pred)</td>
<td></td>
<td>43.0 (15.5)</td>
<td></td>
</tr>
<tr>
<td>Paco₂ [kPa]</td>
<td>10.2 (1.0)</td>
<td>8.8 (1.4)</td>
<td>0.08</td>
</tr>
<tr>
<td>Paco₂, PaCO₂ [%]</td>
<td>5.5 (0.3)</td>
<td>5.4 (0.9)</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Data expressed as mean (SD).

FEV₁=forced expiratory volume in 1 second; VC=vital capacity; TLC=total lung capacity; RV=residual volume; TLO=carbon monoxide transfer factor; Paco₂, PaCO₂=arterial oxygen and carbon dioxide tensions.

Recording of quadriceps strength and electromyogram (EMG)

Twitch quadriceps (TwQ) muscle tension was studied using the technique previously described by Polkey and colleagues. Adductor pollicis muscle function was studied using the technique previously described by Harris and colleagues with a specially designed chair from which the back was removed and laid flat. The subjects were studied supine with the knee flexed at 90° over the end of the chair. Surface EMG was recorded using silver/silver chloride electrodes (Arbo Medical) placed over the belly of the rectus femoris. An inextensible strap was placed around the ankle and connected to a strain gauge (Strainstall range 0-100 kg) mounted to the back of the chair so that the strap ran perpendicular to the ankle and gauge. A 70 mm figure of eight coil head (powered by a double Magstim 200 stimulator) was positioned high in the femoral triangle just lateral to the femoral artery; the best spot was determined by minor positional adjustments during stimulations and marked. Potentiation was avoided and supramaximality determined as for the adductor pollicis muscle. Force and EMG were recorded with the same equipment and software set up as for the adductor pollicis.

Measurement of diaphragm strength

Transdiaphragmatic pressure (Pdi) was recorded by measuring oesophageal pressure (Poes) and gastric pressure (Pga) with a pair of conventionally placed polyethylene balloon catheters. Pressures were measured by differential pressure transducers (Validyne MP45, Validyne, Northridge, CA, USA). The signals from the transducers were connected to an analogue-digital board (NB-MIO-16, National Instruments, Austin, TX, USA) and recorded by a Macintosh Centis 650 computer using Labview 2.2 software (National Instruments). Twitch transdiaphragmatic pressures (TwPdi) were measured following bilateral anterolateral magnetic stimulation of the stimulation point. Preliminary studies with changes in orientation of the coil head and alterations in the distance between the metal loop and strain gauge to adjust resting tension were conducted before the commencement of the full study.

To avoid twitch potentiation there was a rest period of 20 minutes before the start of stimulation and a 0.5 minute interval between each twitch. Supramaximality of twitch adductor pollicis (TwAP) responses was confirmed by measuring the force generated and the amplitude of the corresponding compound muscle action potential (CMAP) over a range of magnetic power outputs.

Force and EMG were simultaneously recorded and amplified and the signals were passed via a Powerlab 8s recording unit (ADInstruments, Castle Hill, Australia) to a Macintosh Powermac 7500 running Chart software (ADInstruments) sampling at 10 kHz.

Recording of adductor pollicis strength and electromyogram (EMG)

Adductor pollicis muscle function was studied using the technique previously described by Harris and colleagues with a modified handboard. Silver/silver chloride surface electromyogram (EMG) electrodes (Arbo Medical, CT, USA) were placed longitudinally over AP with the earth electrode placed on the tip of the index finger. The supinated hand and forearm were placed in a plastic arm splint that was secured to the handboard with velcro tapes to avoid rotation of the wrist, especially during stimulation. The splint was designed with a window on the medial aspect of the wrist and lower forearm to allow access to the ulnar nerve. The hand was further secured by a padded adjustable metal bar placed on the palm of the hand around which the fingers were comfortably flexed. The thumb was abducted and a metal loop was placed around the proximal phalanx. An inextensible metal chain connected to the metal loop to a strain gauge (Strainstall range 0-100 kg) which was securely positioned on the handboard so that the chain was perpendicular to both the thumb and strain gauge. The skin was marked to outline the flexor carpi ulnaris tendon along its length and the site of the ulnar styloid. The stimulation point was between the flexor carpi ulnaris tendon and the ulnar artery 2.5 cm proximal to the intersection of the marked lines. A 43 mm figure of eight coil head (powered by a Magstim 200 stimulator (Magstim Co Ltd, Whitland, UK) was positioned against the skin with the focus of the output over the
Skeletal muscle strength in COPD

RESULTS

Anthropometric data for the COPD patients and healthy elderly control subjects are summarised in table 1. The two groups were well matched for sex, height, weight, BMI, and fat free mass. Supramaximal of TwAP was achieved in 37 of the 40 study participants at a mean magnetic output of 91.6%; for TwQ supramaximal was achieved in 38 out of 40 patients at a mean magnetic output of 90.1%. The individual data for the non-volitional tests of muscle strength are illustrated in fig 1. Despite a mean 30% reduction in quadriceps strength in the COPD group (mean (SD) TwQ 7.1 (2.2) kg vs 10.0 (2.7) kg; 95% CI -4.4 to -1.4, p<0.001), twitch amplitudes of the adductor pollicis muscle were normal (TwAP 6.52 (1.90) N and 6.80 (1.99) N for the COPD patients and elderly controls, respectively; 95% CI -1.5 to 0.97, p=0.65). Like the adductor pollicis, diaphragm strength was not reduced in the COPD group (TwPdi 23.0 (5.6) cm H\textsubscript{2}O for the COPD group and 23.5 (5.2) cm H\textsubscript{2}O for the controls; 95% CI -4.5 to 3.5, p=0.81).

Seven of the COPD patients had taken oral corticosteroids in the preceding 6 months with a mean daily dose of 2.1 mg (two patients were on low dose maintenance corticosteroids and five had received a corticosteroid-burst regimen for infective exacerbations). Subgroup analysis showed no significant difference in TwAP or TwQ between these individuals and the other COPD patients (TwAP 6.95 (2.60) N vs 6.32 (1.55) N, 95% CI -1.20 to 2.47, p=0.52; TwQ 7.06 (3.20) kg vs 7.13 (1.63) kg, 95% CI -3.0 to 2.9, p=0.96), and when the patients on corticosteroids were excluded from analysis the significant reduction in quadriceps strength persisted (95% CI -4.4 to -1.3; p<0.001).

DISCUSSION

This is the first study to compare the strength of the adductor pollicis muscle in COPD patients with age matched controls, and the first to non-volitionally assess the distribution of skeletal muscle weakness. The principal finding is that the strength of the adductor pollicis muscle (and diaphragm) is normal in patients with COPD, despite a substantial reduction in quadriceps strength. This indicates that, for the patients studied, a generalised myopathy does not exist in COPD and the adductor pollicis and diaphragm muscles behave in a different way from the quadriceps.

Methodology

MVC is often used for routine measurements of muscle strength. A true MVC relies on subject motivation, cooperation, and functional ability—factors particularly relevant in children, patients on intensive care units, those with cognitive difficulties, and those prevented from performing a true MVC by pain. However, even in well motivated subjects, submaximal muscle activation is common in routine clinical practice. There is therefore a need for non-volitional methods to assess muscle strength in clinical settings.

The true strength of a muscle is the maximum tetanic tension, which requires the delivery of trains of stimuli at different frequencies and construction of a force-frequency curve. For many muscles this is not tolerable in humans, hence techniques using single supramaximal stimuli have been developed. The tension generated enjoys a constant relationship with the maximal tetanic tension. Magnetic stimulation has recently been successfully introduced to the clinical and laboratory setting to assess the strength of the adductor pollicis and quadriceps muscles and the diaphragm. This form of stimulation is more reliable in ensuring supramaximality and is less painful than traditional electrical stimulation, so is more acceptable to patients; in this study magnetic stimulation was well tolerated by all participants.

Significance of findings

The strength of the adductor pollicis muscle in patients with COPD has not previously been compared with that of elderly control subjects, although Whittaker et al reported that short term refeeding of malnourished COPD patients did not...
improve adductor pollicis muscle function. By comparing their data with historical controls, Whitaker and colleagues concluded that adductor pollicis function was normal in COPD. They demonstrated that the changes in adductor pollicis muscle function in patients with COPD are not caused by the disease process itself but rather by a combination of factors, including deconditioning and systemic inflammatory processes. They also noted that the adductor pollicis muscle is a large proximal upper limb muscle and a small distal lower limb muscle would help to confirm or refute this hypothesis, but well-established reproducible techniques are not currently available.

In summary, the strength of the adductor pollicis muscle (and the diaphragm) is normal in patients with stable COPD despite the presence of significant weakness of the quadriceps. This observation supports the hypothesis that deconditioning and disuse atrophy are important in the development of muscle weakness in patients with COPD, at least in those who are stable without recent weight loss. However, a systematic approach to the assessment and management of the proximal muscles cannot be excluded. Further studies are required to delineate whether disuse alone is a sufficient condition, or whether interaction with systemic factors is also required.

An alternative explanation for the results of this study is that a systemic process does operate but preferentially affects the proximal muscles; steroid myopathy, although excluded as a cause in the present study, is an example of such a process. This is supported by work by Gosselink and colleagues who reported that handgrip and elbow flexion force are less affected than shoulder abduction or knee extension force in patients with COPD using volitional techniques. Why a systemic inflammatory process (or, indeed, steroid myopathy) should have a predilection for proximal muscles is not known. A possible explanation is that some myopathies preferentially affect certain fibre types; necropsy data suggest that the adductor pollicis muscle, although containing both fibre types, is largely composed of type 1 fibres whereas the quadriceps muscle consists of 43% type 1 fibres and 57% type 2 fibres. Non-volitional assessment of a large proximal upper limb muscle and a small distal lower limb muscle would help to confirm or refute this hypothesis, but well-established reproducible techniques are not currently available.

REFERENCES

LUNG ALERT

Prophylactic itraconazole may decrease the rate of invasive fungal infection in allogeneic haematopoietic stem cell transplant recipients

Invasive fungal infections account for the majority of deaths due to infection in patients following allogeneic haematopoietic stem cell transplants, although toxicity secondary to antifungal agents and the emergence of resistant fungal strains are presenting clinical dilemmas. This multicenter randomised open label trial compared prophylactic itraconazole (intravenous and oral) with fluconazole (intravenous and oral) in 140 patients over the age of 13 on the first day after transplantation and continued for 100 days with follow up until day 180 after transplantation or death. The primary end point was the incidence of invasive fungal infection and the secondary end points were the rates of superficial fungal infection, adverse events secondary to the study drug, mortality from fungal infection, and survival. The incidence of invasive fungal infection was significantly lower in the patients given prophylactic itraconazole with lower though non-significant differences in mortality. Overall, the incidence of invasive fungal infection was high in this study compared with that of earlier studies. This was attributed both to the high use of corticosteroids (85%) which is associated with an increased risk of fungal infection and the generally increasing incidence reported throughout transplant centres in the United States.

The safe and effective use of itraconazole in patients undergoing allogeneic haematopoietic stem cell transplantation may represent an important advance in the prevention of possibly fatal invasive fungal infection, although gastrointestinal side effects were significantly higher in patients treated with itraconazole.

S Doffman
Specialist Registrar, The Whittington Hospital, London, UK
sarah_doffman@hotmail.com
Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease

W D-C Man, M G G Soliman, D Nikoletou, M L Harris, G F Rafferty, N Mustfa, M I Polkey and J Moxham

Thorax 2003 58: 665-669
doi: 10.1136/thorax.58.8.665

Updated information and services can be found at:
http://thorax.bmj.com/content/58/8/665

These include:

References
This article cites 36 articles, 12 of which you can access for free at:
http://thorax.bmj.com/content/58/8/665#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/