Exhaled leukotrienes and prostaglandins in COPD

P Montuschi, S A Kharitonov, G Ciabattoni, P J Barnes

Background: The role of eicosanoids, including leukotrienes (LTs) and prostaglandins (PGs), in chronic obstructive pulmonary disease (COPD) is uncertain. The aim of this study was to investigate whether eicosanoids are measurable in exhaled breath condensate (EBC), a non-invasive method of collecting airway secretions, in patients with stable mild to moderate COPD, and to show possible differences in their concentrations compared with control subjects.

Methods: LTβ, LTE4, PGE2, PGD2-methoxime, PGFα, and thromboxane B2 (TxB2) were measured in EBC in 15 healthy ex-smokers, 20 steroid naïve patients with COPD who were ex-smokers, and in 25 patients with COPD who were ex-smokers and who were treated with inhaled corticosteroids. The study was of cross sectional design and all subjects were matched for age and smoking habit.

Results: LTβ and PGE2 concentrations were increased in steroid naïve (LTβ: median 100.6 (range 73.5–145.0) pg/ml, p<0.001; PGE2: 98.0 (range 57.0–128.4) pg/ml, p<0.001) and steroid treated patients with COPD (LTβ: 99.0 (range 57.9–170.5) pg/ml, p<0.001; PGE2: 93.6 (range 52.8–157.0) pg/ml, p<0.001) compared with control subjects (LTβ: 38.1 (range 31.2–53.6) pg/ml; PGE2: 44.3 (range 30.2–52.1) pg/ml). Both groups of patients had similar concentrations of exhaled LTβ (p=0.43) and PGE2 (p=0.59). When measurable, LTE4 and PGD2-methoxime concentrations were similar in COPD patients and controls, whereas PGFα concentrations were increased in the former. TxB2-LI was undetectable in any of the subjects.

Conclusions: There is a selective increase in exhaled LTβ and PGE2 in patients with COPD which may be relatively resistant to inhibited corticosteroid therapy.

Table 1 Characteristics of study subjects

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Healthy subjects [n=15]</th>
<th>Steroid naïve COPD patients [n=20]</th>
<th>Steroid treated COPD patients [n=25]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>60 (5)</td>
<td>65 (2)</td>
<td>67 (2)</td>
</tr>
<tr>
<td>F/M</td>
<td>8/7</td>
<td>11/9</td>
<td>13/12</td>
</tr>
<tr>
<td>Smoking</td>
<td>Ex</td>
<td>Ex</td>
<td>Ex</td>
</tr>
<tr>
<td>Pack years</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>FEV1 (l)</td>
<td>4.55 (0.29)</td>
<td>1.29 (0.27)*</td>
<td>1.41 (0.19)*</td>
</tr>
<tr>
<td>FVC (l)</td>
<td>4.72 (0.31)</td>
<td>2.41 (0.25)*</td>
<td>2.56 (0.15)*</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>95.1 (4.5)</td>
<td>52.4 (3.8)*</td>
<td>50.6 (4.3)*</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>99.2 (3.7)</td>
<td>79.4 (3.3)*</td>
<td>74.9 (4.0)*</td>
</tr>
<tr>
<td>Atopy</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Beta2 agonists</td>
<td>No</td>
<td>4/20</td>
<td>5/25</td>
</tr>
<tr>
<td>Theophylline</td>
<td>No</td>
<td>14/20</td>
<td>15/25</td>
</tr>
</tbody>
</table>

Groups were frequency matched by age and smoking habit. Data are expressed as means (SE).

COPD=chronic obstructive pulmonary disease; FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity.

Footnotes:
†Inhaled corticosteroids: beclomethasone dipropionate (dose range 0.2–1 mg/day); budesonide (dose range 0.4–0.8 mg/day), and fluticasone propionate (dose range 0.75–2 mg/day).

See end of article for authors’ affiliations

Correspondence to: P Montuschi, Department of Pharmacology, School of Medicine, Catholic University of the Sacred Heart, L.go F. Vito, I-00168 Rome, Italy; pmontuschi@m.unicatt.it

Revision received 3 December 2002
Accepted for publication 26 March 2003

The role of leukotrienes (LTs) and prostaglandins (PGs) in the pathophysiology of chronic obstructive pulmonary disease (COPD) is uncertain. LTβ, a potent neutrophil chemoattractant, and cysteinyl(cys)-LTs which cause bronchoconstriction and have proinflammatory effects are chemoattractant, and cysteinyl(cys)-LTs which cause bronchoconstriction and have proinflammatory effects are measurable in sputum in patients with chronic bronchitis.1 The concentrations of LTβ in serum are increased in patients with COPD but their effects are unknown.2

Most of the studies investigating the role of eicosanoids in COPD have used invasive techniques such as bronchoalveolar lavage3 or have measured these compounds in plasma or urine remote from the site of production.1 7 8-Isoprostane, a PGFα analogue which reflects oxidative stress, is increased in exhaled breath condensate (EBC) in patients with COPD.4 EBC is a completely non-invasive method of sampling secretions from the airways.5 6 LTβ and LTE4, but not PGE2, are increased in EBC in steroid naïve asthmatic patients compared with healthy subjects.11 The aim of the present study was to measure EBC concentrations of LTs and PGs in steroid naïve and steroid treated patients with stable COPD to identify possible selective profiles of eicosanoids in COPD.

METHODS
Subjects and study design
A random sample of 15 healthy subjects, 20 steroid naïve patients with COPD, and 25 patients with COPD who were treated with inhaled corticosteroids participated in the cross sectional study (table 1).
Subjects attended on one occasion for clinical examination, spirometry, and EBC collection. The diagnosis of COPD was based on the Global Initiative for Obstructive Lung Disease (GOLD) guidelines. All patients had moderate COPD and were clinically stable with forced expiratory volume in 1 second (FEV₁) <80% predicted and FEV₁/forced vital capacity (FEV₁/FVC) ratio <70% which did not change markedly over 8 weeks. Patients with other respiratory or systemic diseases were excluded from the study. All study subjects were ex-smokers and had stopped smoking for at least 1 year. Smoking status was checked by measuring urinary cotinine levels which were <10 ng/ml in all study subjects. None of the steroid naïve COPD patients had received corticosteroids in the previous 4 weeks. Inhaled β-adrenergic agonists and theophylline were also used in some patients (table 1).

Repeatability for eicosanoid measurements was assessed in 25 patients with COPD. A second EBC sample was collected within 7 days of the first sample.

The study was approved by the ethics committee of the Royal Brompton Hospital and Harefield Trust and informed consent was obtained from all subjects.

Pulmonary function

Spirometric tests were performed using a dry spirometer (Vitalograph Ltd, Buckingham, UK) and the best value of the spirometric tests was performed using a dry spirometer within 7 days of the first sample.

Measurement of exhaled eicosanoids

EBC samples were collected using a commercially available condensing chamber, as previously described (Ecoscreen; Jaeger, Hoechberg, Germany). Subjects breathed tidally through a mouthpiece connected to the condenser for 15 minutes.

LTB₄, LTE₄, PGE₂, TXB₂, and PGD₂-methoxime (MOX), a stable derivative of PGD₂, were measured by enzyme immunoassays (Cayman Chemical, Ann Arbor, MI, USA). PGE₂ concentrations were measured by a radioimmunoassay (RIA). The values of LTE₄, PGE₂, and TXB₂ were referred to as eicosanoid like immunoreactivity (LI).

The intra-assay and inter-assay coefficients of variability of the eicosanoid assays were within 10% and 15%, respectively. LTB₄ and PGE₂ measurements in EBC were qualitatively validated by reverse phase high performance liquid chromatography. The values of LTE₄, PGE₂, and TXB₂, were referred to as eicosanoid like immunoreactivity (LI).

The possible influence of the ventilation rate on exhaled LTB₄, LTE₄-LI, and PGE₂ concentrations was excluded as previously described. Saliva contamination of EBC was excluded by measuring amylase concentrations which were undetectable in all samples tested.

Statistical analysis

Eicosanoid concentrations in EBC were expressed as median values with the minimum to maximum range. A Kruskal-Wallis test followed by pairwise Mann-Whitney U tests was used to compare groups. Correlation was expressed as Spearman's correlation coefficient. Significance was defined as a p value of <0.05. Within-subject repeatability of exhaled eicosanoid measurements was expressed as intraclass correlation coefficient.

RESULTS

Exhaled LTB₄ was increased in both steroid naïve COPD patients (100.6 (73.5–145.0) pg/ml; p<0.001) and those treated with steroids (99.0 (57.9–128.4) pg/ml; p=0.001) compared with age-matched controls (38.1 (31.2–53.6) pg/ml; fig 1A). PGE₂, in EBC was also increased in both steroid naïve (98.0 (57.9–128.4) pg/ml; p=0.001) and steroid treated patients with COPD (93.6 (52.8–157.0) pg/ml; p<0.001) compared with healthy subjects (44.3 (30.2–52.1) pg/ml; fig 1B).

There was no difference in exhaled LTB₄ (p=0.43) and PGE₂ (p=0.59) concentrations between steroid naïve and steroid treated patients with COPD. LTB₄ (p=0.86) and PGE₂ concentrations (p=0.57) were similar in patients with COPD treated or not treated with theophylline. There was no difference in LTB₄ (p=0.89) and PGE₂ concentrations (p=0.23) between COPD patients treated or not treated with β₂ agonists.

There was no difference (p=0.31) in LTE₄-LI between healthy subjects (15.5 (11.0–27.0) pg/ml), steroid naïve patients with COPD (23.3 (9.1–31.3) pg/ml), and steroid treated patients with COPD (19.5 (9.0–42.0) pg/ml). PGF₂α-LI was measurable in five steroid naïve COPD patients, in six steroid treated patients, and in five healthy subjects. In those subjects in whom PGF₂α-LI was measurable, its concentrations were higher in steroid naïve (15.0 (10.9–19) pg/ml; p<0.05) and in steroid treated patients with COPD (14.7 (10.0–21.7) pg/ml; p<0.05) than in healthy subjects (8.9 (5.9–10.9) pg/ml). PGD₂-MOX was measurable in six steroid naïve COPD patients (11.2 (8.7–15) pg/ml), in seven steroid treated COPD patients (11.4 (8.0–14.9) pg/ml), and in six healthy subjects (10.0 (8.0–15) pg/ml). In those subjects in whom PGD₂-MOX was measurable, there was no difference in the levels of this PG between the three study groups (p=0.80).

There was a correlation between LTB₄ and PGE₂ in both steroid naïve (r=0.75, p<0.001) (fig 2A) and steroid treated

Figure 1 [A] LTB₄ and [B] PGE₂ concentrations in exhaled breath condensate in healthy subjects [●], steroid naïve patients with COPD [▪], and steroid treated patients with COPD [▲]. Median values are shown by horizontal bars.
Eicosanoids in COPD

cillosanoids may help to differentiate between inflammatory lung diseases. The physicochemical properties of eicosanoids in EBC (volatile versus non-volatile) and their partition in EBC aerosol particles versus water vapour are largely unknown. The high inter-individual variability in the amount of aerosol particles in EBC indicates the need for a dilution marker. However, the selective increase of structurally related compounds in the single subject (LTB4 but not LTE4 and PGE2 but not PGD2) is likely to reflect a real increase in the concentrations of these eicosanoids.

The effects of corticosteroids on eicosanoids in COPD in vivo are largely unknown. In our study there was no difference in exhaled LT and PG concentrations between steroid naïve and steroid treated patients with COPD. However, the cross sectional design cannot exclude steroid reduction of LTB4, or PGE2, and controlled studies with these drugs are required. Moreover, the effects of potential variables which may influence the effects of exhaled eicosanoids such as the use of previous medication, effects of feeding, effects of exercise, and diurnal variation need to be investigated.

In conclusion, we have shown that LTB4 and PGE2 are increased in EBC in patients with stable COPD. The profile of exhaled LTs and PGs in patients with COPD is different from that previously reported in patients with asthma. Identification of selective profiles of eicosanoids in EBC, a completely non-invasive method, may be relevant for the diagnosis and management of COPD.

ACKNOWLEDGEMENTS

This work was supported by Imperial College, National Heart and Lung Institute, London, UK and Catholic University of the Sacred Heart, Rome, Italy, grant “Fondo di Ateneo” 2001–2002.

Authors’ affiliations

P Montuschi, Department of Pharmacology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy
S A Kharitonov, P J Barnes, Department of Thoracic Medicine, Imperial College School of Medicine at the National Heart and Lung Institute, London, UK
G Ciabattoni, Department of Drug Sciences, G d’Annunzio University, Chieti, Italy

This work was performed at Imperial College School of Medicine at the National Heart and Lung Institute, Department of Thoracic Medicine, London, UK.

REFERENCES

LUNG ALERT

CT-guided pleural biopsy preferable to traditional Abram’s needle in diagnosing malignant pleural disease

Malignant disease is a leading cause of pleural effusion, with about 40 000 cases occurring annually in the UK and 175 000 in the USA. Pleural fluid cytology establishes a diagnosis in only 60% of these effusions. Pleural biopsy using an Abram’s needle, first introduced in 1958, is routinely performed for establishing a diagnosis in the remaining cases. This procedure has a low sensitivity and is associated with numerous complications. Undiagnosed patients may either have to undergo the procedure again or be referred for a thorascopic biopsy.

In this single centre, prospective, parallel, randomised study the authors compared CT-guided needle biopsy with standard pleural biopsy using Abram’s needle. Fifty patients with cytologically negative unilateral and exudative pleural effusions were randomised to undergo either CT-guided pleural biopsy or Abram’s pleural biopsy performed by a single competent operator. Three patients did not undergo the procedure at all and, of the remaining 47, 24 underwent Abram’s biopsy while 23 underwent CT-guided biopsy. The results showed that sensitivity for pleural malignancy with the CT-guided procedure was 87% compared with 47% with Abram’s needle. Although the specificity and positive predictive value for both CT-guided biopsy and Abram’s biopsy were the same at 100% each, the negative predictive value of CT-guided biopsy was superior at 80% compared with 44% with Abram’s needle.

P Bhatia
Chest Clinic, Blackpool Victoria Hospital, Blackpool, UK
PravB@bigfoot.com
Exhaled leukotrienes and prostaglandins in COPD

P Montuschi, S A Kharitonov, G Ciabattoni and P J Barnes

Thorax 2003 58: 585-588
doi: 10.1136/thorax.58.7.585

Updated information and services can be found at:
http://thorax.bmj.com/content/58/7/585

These include:

References
This article cites 20 articles, 2 of which you can access for free at:
http://thorax.bmj.com/content/58/7/585#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Drugs: respiratory system (526)
Health education (1223)
Smoking (1037)
Tobacco use (1039)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/