The case history of a patient admitted to the ICU with severe hypoxic respiratory failure later diagnosed as Wegener's granulomatosis is presented. The diagnosis and management of patients with suspected pulmonary vasculitis is discussed.

28 year old man was admitted from a local hospital to the intensive care unit (ICU) at Hammersmith Hospital via the operating theatre. He had presented with a 3 month history of nasal stuffiness, epistaxis and haemoptysis, and had recently noticed increasing shortness of breath. He had lost 6 kg in weight and reported night sweats. His initial chest radiograph showed diffuse peripheral shadowing and a subsequent computed tomographic (CT) scan confirmed the presence of multiple infiltrative lesions (fig 1). Bronchoscopy showed evidence of recent diffuse haemorrhage; bronchoalveolar lavage cytology revealed an eosinophilia but was negative for acid fast bacilli, legionella, and fungi. Over the next few days he deteriorated, requiring endotracheal intubation and ventilation. He was transferred for an open lung biopsy. Lung histology was non-specific showing diffuse alveolar haemorrhage with fibrin deposition, fibroblastic proliferation, and a predominantly neutrophilic inflammatory infiltrate. Following the lung biopsy the patient was admitted to the ICU with severe hypoxaemic respiratory failure. The patient had no significant past medical history. He was born in India and raised in the UK; his last visit abroad was to India 2 years before admission. He was a sales manager for a building company and did not smoke. On admission to ICU he was pyrexial at 38°C. He was paralysed and ventilated requiring 95% oxygen. There were no rashes, eyes and joints were normal, but he was noted to have a slight crusting of his nares. The blood pressure was 114/54 mm Hg supported by a mean arterial pressure of 50 mm Hg. The heart rate was 100 beats/min and was regular. The patient had no peripheral pulses and the central venous pressure was 0 mm Hg. The arterial blood gases were pH 7.4, Pao2 54 mm Hg, Paco2 28 mm Hg and a bicarbonate of 28 mmol/l. The electrocardiogram was normal. The temperature was 38°C. Serology tests were negative for Epstein-Barr virus, hepatitis A, B and C, HIV, cytomegalovirus and other infections. Serology tests for antinuclear antibodies (ANA) were negative. His initial chest radiograph showed diffuse infiltrates involving the lungs. The patient had no significant past medical history. He was born in India and raised in the UK; his last visit abroad was to India 2 years before admission. He was a sales manager for a building company and did not smoke. On admission to ICU he was pyrexial at 38°C. He was paralysed and ventilated requiring 95% oxygen. There were no rashes, eyes and joints were normal, but he was noted to have a slight crusting of his nares. The blood pressure was 114/54 mm Hg supported by a mean arterial pressure of 50 mm Hg. The heart rate was 100 beats/min and was regular. The patient had no peripheral pulses and the central venous pressure was 0 mm Hg. The arterial blood gases were pH 7.4, Pao2 54 mm Hg, Paco2 28 mm Hg and a bicarbonate of 28 mmol/l. The electrocardiogram was normal. The temperature was 38°C. Serology tests were negative for Epstein-Barr virus, hepatitis A, B and C, HIV, cytomegalovirus and other infections. Serology tests for antinuclear antibodies (ANA) were negative. His initial chest radiograph showed diffuse infiltrates involving the lungs.
and there is a slight male predominance. There are reports of vasculitis occurring in families, but most cases arise sporadically and, unlike most autoimmune diseases, so far no consistent HLA associations have been identified, although there are associations with certain complement alleles and alleles of α1-antitrypsin. Environmental factors such as silica exposure, drugs, and infections may play a part; however, although these may be important in elucidating the pathogenesis of vasculitis, in practice most cases have no obvious genetic or environmental precipitant. As can be seen from this case presentation, prompt diagnosis of vasculitis is vital, not only to instigate appropriate treatment but also to avoid unnecessary invasive diagnostic procedures. In retrospect, the previously arranged open lung biopsy in this case was probably not required and was precipitated by the deteriorating state of the patient and the need to secure a diagnosis. The ANCA result arrived on the ITU at the same time as the patient returned from theatre.

Small vessel vasculitis in the lung involves destruction of arterioles, capillaries and venules by an infiltration of activated neutrophils. This results in interstitial oedema and diffuse alveolar haemorrhage. Repeated episodes of lung haemorrhage may result in pulmonary fibrosis. Haemoptysis is a common presenting feature, although it can be late or even absent even in the face of significant alveolar bleeding. Other symptoms include dyspnoea, fever, and weight loss. Patients are anaemic, hypoaemic, and have diffuse infiltrative shadowing on the chest radiograph. Alveolar haemorrhage can sometimes be confirmed on bronchoscopy, with haemosiderin-laden macrophages seen on cytological examination of lavage fluid. However, patients may be too hypoxic to undergo this procedure. Carbon monoxide transfer coefficient corrected for lung volume (Kco) will be raised. In the ITU patients are often ventilated, and methods of measuring Kco in ventilated patients have been reported and validated, although they are often only available in specialist centres where operators are familiar with their interpretation. A CT scan of the chest is often unhelpful in determining the aetiology of alveolar haemorrhage, although it may reveal cavitating lesions typical of granulomatous infiltration. Lung biopsies frequently demonstrate necrotic tissue or show non-specific inflammation and haemorrhage, particularly if obtained via the transbronchial route, but the yield can be improved by open lung biopsy. If there is evidence of renal involvement a renal biopsy is more likely to be diagnostic and will usually show a focal necroizing glomerulonephritis.

Patients with vasculitis may present with isolated pulmonary haemorrhage, but usually there is also systemic involvement. Most patients with Wegener’s granulomatosis have granulomatous lesions in the upper respiratory tract which result in chronic sinusitis, rhinitis, chronic otitis media, and deafness. Involvement of the trachea can present with life threatening stridor. Granulomas are also found in many sites outside the respiratory system including the kidney, central nervous system, prostate, parotid and orbit. Patients with microscopic polyangitis and Wegener’s granulomatosis also present with systemic symptoms secondary to the small vessel vasculitis. Urine abnormalities include microscopic haematuria and proteinuria, with red cell casts on microscopy. The serum creatinine may initially be in the normal range, but acute renal failure tends to develop quite rapidly. Renal and respiratory involvement both have a significant effect on mortality. Other organs in which vasculitis commonly occurs are skin, joints, muscles, gastrointestinal system, peripheral and central nervous system, and the eye.

Routine blood counts often show a normocytic or microcytic anaemia with a neutrophil leukocytosis, although there can also be eosinophilia (especially in Churg-Strauss syndrome) and thrombocytopenia. Thrombocytopenia suggests alternative causes of lung haemorrhage such as primary hematological abnormalities or systemic lupus erythematosus, in which case there will often be accompanying low complement levels and positive antinuclear antibodies. The erythrocyte sedimentation rate and C reactive protein level will both be raised. Biochemistry will often show a low serum albumin, raised alkaline phosphatase, and raised urea and creatinine. These results may point to a diagnosis of vasculitis but are relatively non-specific. The most important serological tests in the diagnosis of vasculitis are antineutrophil cytoplasmic antibodies (ANCA). ANCA were first described in 1982 and subsequently was found to be associated with both Wegener’s granulomatosis and microscopic polyangitis. There are two main patterns of ANCA—cytoplasmic (C) and perinuclear (P)—defined by their appearance on indirect immunofluorescence using ethanol fixed neutrophils. The main target antigen of C-ANCA is proteinase 3 (PR3). P-ANCA have a wider range of specificities but, in systemic vasculitis, they are usually specific for myeloperoxidase (MPO). Most patients with Wegener’s granulomatosis have anti-PR3 specific ANCA, patients with Churg-Strauss syndrome and polyarteritis nodosa have anti-MPO ANCA, and patients with microscopic polyangitis have either anti-PR3 or anti-MPO ANCA. If immunofluorescence is used alone, then C-ANCA is more specific than P-ANCA for vasculitis since perinuclear staining is not only produced by anti-myeloperoxidase antibodies but also by antibodies produced by anti-neutrophil cytoplasmic enzymes not associated with vasculitis. All serum that is ANCA positive should therefore be tested in PR3 and MPO ELISA as this greatly increases their specificity. In a large European trial for the standardisation of ANCA assays, the specificity of immunofluorescence alone was found to be 97% for C-ANCA and 81% for P-ANCA. The combination of C-ANCA with anti-PR3 and P-ANCA with anti-MPO both had a specificity of 99%. However, a negative ANCA assay does not exclude the possibility of vasculitis as there are a few cases of small vessel vasculitides that are ANCA negative. In these cases a tissue diagnosis should be sought.

Management

Systemic vasculitis should be treated with cyclophosphamide (we use 3 mg/kg/day, reduced in the elderly to 2 mg/kg/day) combined with prednisolone. Historically, cyclophosphamide was continued for at least a year after remission. However, in view of the side effect profile of cyclophosphamide, many clinicians now substitute azathioprine in stable patients at 3 months. The European Vasculitis Study Group has set up a series of multicentre randomised controlled trials to investigate the role of different immunosuppressive regimes in vasculitis. The first of these trials to be completed has recently
confirmed that azathioprine is as effective as cyclophosphamide for maintenance of remission after 3 months. More recently, mycophenolate mofetil, levamisole, and TNF directed treatment have also been used. In patients with fulminant disease such as dialysis dependent renal failure and alveolar haemorrhage, there may be an additional benefit from plasma exchange or intravenous methylprednisolone and the results of the current European trials should clarify this. In patients who fail to respond to this treatment or who cannot tolerate cyclophosphamide due to marrow suppression, there may also be a role for immunosuppression, pooled immunoglobulin, or monoclonal antibodies, although so far much of the evidence is anecdotal. Lung haemorrhage is a major cause of early mortality and aggressive supportive therapy is important. Patients should be kept relatively intra-vasculature devided until the lung haemorrhage is controlled and clearly exacerbating pulmonary oedema must be avoided. Although acute renal failure may be exacerbated by this regimen, this is of secondary importance as the patient can be supported with renal replacement therapy and acute tubular necrosis caused by initial volume depletion is likely to recover in the long term. However, care must be taken to avoid hypoxaemia from the hypercapnic circulation with consequent gut and liver dysfunction that may result in multiple organ failure. There is little evidence on which to base ventilatory strategies for adults. A rational approach is to limit excessive tidal volume excursions or pressure changes which are likely to damage further the fragile vasculature and exacerbate haemorrhage. Modern ventilator targets should therefore be set. However, profound hypoxaemia and hypercapnia should be avoided as this may exacerbate pulmonary hypertension. A high inspired oxygen fraction may be harmful and clearly exacerbating pulmonary oedema must be avoided. In summary, patients admitted to the ICU with suspected pulmonary vasculitis have a high mortality of around 25–50%, depending upon aetiology. These patients should be discussed early with a centre which has specialist expertise in this area to ensure prompt diagnosis and access to adjuvant therapies such as plasma exchange. ANCA assays are vital in the diagnosis, and patients with suspected lung haemorrhage should be tested within 24 hours of presentation. This will help to minimise morbidity and mortality from these diseases. Good long term survival can be achieved with prompt treatment with appropriate immunosuppressive agents. Continued low dose immunosuppression and follow up are required long term as there is a high incidence of relapse.

AUTHORS’ AFFILIATIONS
M Griffith, Consultant Physician and Nephrologist, St Mary’s Hospital, London, UK
S Brett, Consultant in Intensive Care Medicine, Hammersmith Hospital, London UK

REFERENCES

Illustrative case 3: Pulmonary vasculitis

M Griffith and S Brett

Thorax 2003 58: 543-546
doi: 10.1136/thorax.58.6.543

Updated information and services can be found at:
http://thorax.bmj.com/content/58/6/543

These include:

References
This article cites 36 articles, 11 of which you can access for free at:
http://thorax.bmj.com/content/58/6/543#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Vascularitis (53)
Adult intensive care (179)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/