LETTERS TO THE EDITOR

Revision of BTS guidelines for treatment of asthma

The paper by Ward et al confirms the findings of Laitinen et al showing that airways inflammation is present even in patients with mild asthma. This emphasises the importance of using anti-inflammatory drugs (steroids) as soon as the diagnosis of asthma has been confirmed, even in patients thought to have only ‘mild asthma’. Without anti-inflammatory treatment, symptoms resulting from bronchial hyperresponsiveness are never controlled and optimal lung function is never attained. Over time, structural changes (remodelling) occur leading to a progressive decline in lung function and the risk of fixed obstruction (chronic obstructive pulmonary disease).

The present widespread dependence on bronchodilators in the UK may contribute to the fact that we have one of the highest respiratory death rates in Europe.\(^4\) The use of bronchodilators alone as in step 1 of the BTS guidelines should be discouraged, and treatment started at step 2 with regular inhaled corticosteroids to control symptoms and maximise peak flow rate. Bronchodilators should be used only as necessary for breakthrough wheezing. These principles have been used in Finland since 1994 with remarkable success in treating asthma.\(^1\) The new BTS guidelines would do well to follow their example.

George Strube
33 Goffs Park Road, Crawley, West Sussex RH11 8AX, UK; Gstrube@btinternet.com

References

Authors’ reply

We would like to thank Dr Strube for his interest in our recent paper and his stimulating letter which is topical given that the new BTS guidelines on asthma management are currently in preparation. Our study was an attempt to investigate the interrelationships between airway inflammation, airway structural change (remodelling), lung function, and bronchial hyperreactivity to methacholine in patients with mild to moderate symptomatic asthma.

If you have a burning desire to respond to a paper published in Thorax, why not make use of our ‘rapid response’ option?

Log on to our website (www.thoraxjnl.com) and find the paper that interests you, and send your response via email by clicking on the ‘eletters’ option in the box at the top right hand corner.

Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on ‘read eletters’ on our homepage.

The editors will decide as before whether to also publish it in a future paper issue.

Our paper is supportive of a further point, adding to work from others, which we feel is potentially substantive, of possible importance to future guideline considerations, and perhaps relates to some of Dr Strube’s concerns. The potential paradigm shift is that determining appropriate treatment only by reference to symptoms and lung function, as in current international and draft BTS guidelines, or even against indices of inflammation, may be oversimplistic, with prolonged treatment necessary to benefit airway remodelling reflected by improvement in BHR. It should be recognised that this remains a hypothesis and, pragmatically, it is of interest that the inclusion of BHR as an asthma management tool in the UK is not resourced and is not currently practicable.\(^7\)

We also realise that the demanding and detailed preparation of the BTS asthma guidelines has followed a due process of transparent consultation on the available evidence base with “levels of evidence” leading to “grades of recommendation” and, in turn, to “recommended best practice”. If appropriate pathophysiological research relevant to the clinical questions does not exist, it cannot be included. We feel that longitudinal data that seek to integrate information on airway inflammation, airway remodelling, lung function, and bronchial hyperreactivity and the effects of treatment are required. Such work, though demanding, is possible and would require multidisciplinary cooperation, dialogue, and appropriate support.

Chris Ward is a European Respiratory Society long term research fellow. The work was also supported by Australian NHMRC and a grant in aid from Glaxo Smith Kline.

C Ward
Lung Biology and Transplant Group, University of Newcastle upon Tyne and The Freeman Hospital, Newcastle upon Tyne, UK; chris.ward@ncl.ac.uk

D Reid, E H Walters
Clinical Sciences, University of Tasmania, Australia

References
4 http://www.brit-thoracic.org.uk/guide/guidelines.htm
Chronic respiratory failure

The recent case report by Smyth and Riley describes an extremely uncommon chronic respiratory failure due to hypoventilation secondary to brainstem stroke, and documents a new treatment option with medroxyprogesterone acetate.

We recently saw two patients also with central hypoventilation resulting in chronic type II respiratory failure and treated both with, among other things, medroxyprogesterone acetate (30 mg twice daily) with good results.

The first patient, a 69 year old man with a medical history of glomus caroticum resection due to malignancy with postoperative radiotherapy, presented to our outpatient clinic with polyglobulia. Arterial blood gas analysis revealed marked hypoxaemia (PaO2 7.6 kPa) and hypercapnia (PaCO2 6.9 kPa). An intensive search for the cause showed no abnormal lung function indicating only marginal chronic obstructive pulmonary disease (FEV1/FVC 68%) but his hypoxic ventilatory response was markedly decreased and his hypercapnic ventilatory response was absent. The patient was treated with acetazolamide, theophylline, and medroxyprogesterone acetate and his blood gas tensions improved within days to normal values (PaO2 10.3 kPa, PaCO2 5.1 kPa).

The second patient, a 38 year old woman, was known from birth to have a hypothalamic pituitary gland deficiency with (stable) adipsia (queteeet index 53). She had complications with menorrhagia, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dyspnoea on several occasions before being sent to our department. Arterial blood gas analysis revealed hypoxaemia and marked hypercapnia (PaO2 8.0 kPa, PaCO2 7.2 kPa). She probably suffered from acromegaly, general malaise, and dys
obesity he was unable to walk, apart from an occasion when he went to meet the Roman Consul Skipion, the African." In a poem entitled “Ptolemy VIII Evergetes II or Kakergetes” the Greek poet Constantine Cavafy wrote:

"Most obese, slothful Ptolemy Physkon, and due to gluttony somnolent observed: wisest poet your verses are somewhat exaggerated....
And from obesity heavy as a stone, and from veracity somnolent the unalloyed Macedonian could scarcely keep his eyes open."

Ptolemy X Alexander I (case 7) was so grossly obese that he had a man on either side to help him walk. He was idle, drunken, and extravagant in his lifestyle. From these descriptions it is clear that obesity was present in all of them and, at least four of the seven kings, there were reports of daytime somnolence. This dynasty was probably the first reported family with sleep disordered breathing that had a familial predisposition.

Figure 1 The pedigree of the Ptolemaic dynasty (shading indicates affected members).

References
3 Strabo. XVII. 1. 5.
5 Polybius. XXXIX. 7.
6 Posidonius. Athens, XII. 549c.
Revision of BTS guidelines for treatment of asthma

George Strube

Thorax 2003 58: 280
doi: 10.1136/thorax.58.3.280

Updated information and services can be found at:
http://thorax.bmj.com/content/58/3/280

These include:

References
This article cites 9 articles, 3 of which you can access for free at:
http://thorax.bmj.com/content/58/3/280#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/