SHORT PAPER

Analysis of DQB1 allele frequencies in pulmonary tuberculosis: preliminary report

A Dubaniewicz, G Moszkowska, Z Szczerkowska, A Hoppe

Background: The human leucocyte antigen (HLA) system plays an important role in the modulation of the immune response. An association between HLA and pulmonary tuberculosis (TB) has been examined in several populations but the results have been inconsistent. The aim of this study was to evaluate the correlation of DQB1 alleles with TB patients and healthy controls in the same ethnic group in Poland.

Method: The DQB1 alleles of 38 patients with TB and 58 healthy university staff volunteers were determined by a PCR-SSP low resolution method.

Results: The DQB1*05 allele occurred more frequently (p adjusted for multiple comparison = 0.002, OR = 2.84, 95% CI 1.57 to 5.15) and the DQB1*02 allele occurred less frequently (p = 0.01, OR = 0.39, 95% CI 0.21 to 0.71) in patients with TB than in controls. The occurrence of DQB1*03,*04,*06 alleles was similar in the two populations.

Conclusions: The occurrence of specific DQB1 alleles may be linked to susceptibility/resistance to tuberculosis.

Tuberculosis (TB) is still an important world health problem, and it is estimated that about one third of the earth's population has been infected with Mycobacterium tuberculosis. Each year there are ~2 million deaths from TB. It is still not clear why only approximately one in 10 of those infected progress to active disease during their lifetime when only a minority have a risk factor.1

Tuberculosis develops by a complex of environmental factors and genetic susceptibility. The observations of the familial occurrence of TB and the description of the disease in monozygotic twins suggest that genetic elements might contribute to determining the course of the infection. It has recently been reported that mutations in genes encoding natural resistance associated macrophage protein 1 (NRAMP-1), interferon-γ receptor, or one component of the interleukin-12 receptor might affect the susceptibility to TB.1

The main stages of cell reactivity—presentation of antigen, phagocytosis, cooperation with T and B lymphocytes, or bactericidal activity—depend on the specificity of the HLA system. Since the DR alleles play an important role in the modulation of the immune response, a possible association between DQB alleles and TB has been examined in Asian and American ethnic groups, but the results have been inconsistent.2–5 Despite the rising incidence of TB in Europe, no such analysis has yet been carried out in European white populations. A study was therefore undertaken to evaluate the occurrence of DQB1 alleles in TB patients and healthy controls in the same ethnic group in Poland.

METHODS

Patients
With the approval of the Independent Bioethics Committee for Scientific Researches, Medical University of Gdańsk, Poland, 38 unrelated patients (23 men) of mean age 40 years (range 22–68) with newly detected active pulmonary TB were studied at the Pulmonological Hospital, Sopot between July and December 2002. The diagnosis of TB was confirmed in all patients by the presence of acid-fast bacilli in sputum smears and by positive sputum culture of M tuberculosis strains. Patients were classified according to clinical stage and appearance on the initial chest radiograph (infiltrates with cavitation in one or two lung zones). A positive PPD skin test was an additional diagnostic criterion. Patients who did not respond to first line treatment (rifampin, isoniazid, ethambutol, pyrazinamide) were excluded from the study.

Controls
Fifty eight unrelated individuals (32 men) of mean age 42 years (range 27–60) without clinical, physical, or laboratory evidence of TB formed the control group. A negative PPD skin test was used to confirm that they did not have TB.

Patients and controls were excluded from the study if they had a family history of TB or other related diseases. Those of different socioeconomic status and ethnic background were also excluded from the study. The Polish population is a relatively homogenous white ethnic group. All patients and controls had been vaccinated with BCG (bacillus Calmette-Guerin).

HLA typing
Genomic DNA was extracted from 10 ml peripheral blood from each individual using the salt extraction method. DQB1 typing was performed using sequence specific amplification polymerase chain reaction with sequence specific primer (PCR-SSP) according to the method described by Olerup and coworkers.6 The DQB1 primers were supplied by DYNAFL for the DYNAL DQ “low resolution” SSP standard kit.

Analysis of data
Data were analysed with STATISTICA for Windows Version 6.0 (StatSoft Inc, USA). Group comparisons were made using the χ^2 test after the Bonferroni correction (p ≤ 0.05). The odds ratio (OR) was calculated with 95% confidence intervals (CI).

RESULTS
A comparison of the frequencies of the DQB1 alleles in the patients with TB and in the control population is shown in Table 1.

The results indicate that the DQB1*05 allele was detected more frequently in patients with TB than in control subjects.
DQB1 alleles in pulmonary tuberculosis

There have been few reports of the correlation between the frequency of DQB1 alleles and susceptibility to pulmonary TB. A significant association was found between the occurrence of DQB1*0501, *0502 and *0601 alleles and TB in many populations. However, we were not able to show that the DQB1*0503 allele encodes a change in the amino acid position 57 of the β chain which influences the charge in the putative peptide binding pocket (P9) of the DQ molecule. The negatively charged P9 binding pocket may bind TB antigens less effectively or elicit a diminished immunogenic response. The findings of Goldfeld et al support the evidence for an association between a specific DQB1*0503 allele and progressive clinical TB. Geluk et al recently identified three new DQA1*0301/DQB1*0302 restricted T cell epitopes of mycobacterial heat shock protein 65 which mounted an efficient response to M. tuberculosis. Epidemiological and experimental studies suggest that the high degree of molecular diversity in HLA molecules influences the variability in the human response to M. tuberculosis.

Table 1

<table>
<thead>
<tr>
<th>DQB1 alleles</th>
<th>No (%) allele positive individuals (n = 58)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQB1*02†</td>
<td>27 (47%) 10 (26%) 0.39 (0.21 to 0.71)</td>
<td></td>
</tr>
<tr>
<td>DQB1*03</td>
<td>39 (67%) 28 (73%) 1.33 (0.72 to 2.44)</td>
<td></td>
</tr>
<tr>
<td>DQB1*04</td>
<td>0 2 (3%) 0</td>
<td></td>
</tr>
<tr>
<td>DQB1*05‡</td>
<td>15 (26%) 19 (50%) 2.84 (1.57 to 5.15)</td>
<td></td>
</tr>
<tr>
<td>DQB1*06</td>
<td>28 (48%) 18 (47%) 1.33 (0.72 to 2.44)</td>
<td></td>
</tr>
</tbody>
</table>

χ² = 12.12; p = 0.0005; pc = 0.002.

ACKNOWLEDGEMENTS

This study was funded by the Polish State Committee for Scientific Researches grant no. 3PO5B 15522.

Authors’ affiliations

A Dubaniewicz, A Hoppe, Department of Pathophysiology, Medical University of Gdańsk, Poland

G Moszkowska, Department of Immunopathology, Medical University of Gdańsk

Z Szczerekowska, Division of Forensic Medicine, Medical University of Gdańsk

REFERENCES

www.thoraxjnl.com
Analysis of DQB1 allele frequencies in pulmonary tuberculosis: preliminary report

A Dubaniewicz, G Moszkowska, Z Szczerkowska and A Hoppe

Thorax 2003 58: 890-891
doi: 10.1136/thorax.58.10.890

Updated information and services can be found at:
http://thorax.bmj.com/content/58/10/890

These include:

References

This article cites 10 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/58/10/890#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Molecular genetics (211)
- TB and other respiratory infections (1273)
- Tuberculosis (51)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/