Effect of tiotropium bromide on circadian variation in airflow limitation in chronic obstructive pulmonary disease

P M A Calverley, A Lee, L Towse, J van Noord, T J Witek, S Kelsen

Background: In chronic obstructive pulmonary disease (COPD), the degree of circadian variation in forced expiratory volume in 1 second (FEV₁) and the influence of anticholinergic blockade is not known. Tiotropium is a long acting inhaled anticholinergic bronchodilator that increases daytime FEV₁ in COPD. We hypothesised that tiotropium would modify the overnight change in FEV₁, and this would be unaffected by the timing of drug administration.

Methods: A double blind, randomised, placebo controlled trial was conducted with tiotropium 18 mg once daily in the morning (09.00 hours), evening (21.00 hours), or an identical placebo. Patients with stable COPD (n = 121, FEV₁ = 41% predicted) underwent spirometric tests every 3 hours for 24 hours at baseline and after 6 weeks of treatment.

Results: There were no significant differences at baseline between the groups. Tiotropium improved mean (SE) FEV₁ over 24 hours in the morning (1.11 (0.03) l) and evening (1.06 (0.03) l) groups compared with placebo (0.90 (0.03) l), and nocturnal FEV₁ (mean of 03.00 and 06.00 hours) in the morning (1.03 (0.03) l) and evening (1.04 (0.03) l) groups compared with placebo (0.82 (0.03) l) at the 6 week visit (p<0.01). FEV₁ before morning or evening dosing was similar, while the peak FEV₁ moved later in the day with active treatment. The mean percentage change in FEV₁ from 09.00 hours to 03.00 hours (the nocturnal decline in FEV₁) was –2.8% in the morning group, –1.0% in the evening group, and –12.8% in the placebo group. The magnitude of the peak to trough change in FEV₁ was not statistically different.

Conclusions: Tiotropium produced sustained bronchodilation throughout the 24 hour day without necessarily abolishing circadian variation in airway calibre.
other concurrent medication was required to be stable during the study period. The protocol was approved by local institution review boards and informed consent was obtained from all patients.

Study design

A 6 week, multicentre, randomised, double blind, double dummy, parallel group design was used. Three treatment arms were compared: tiotropium 18 µg daily administered at 09.00 hours (Tio-AM), tiotropium 18 µg daily administered at 21.00 hours (Tio-PM), and placebo. All patients inhaled the contents of one capsule twice daily (either placebo or tiotropium, depending on the group). The times of study administration selected were based on the anticipated average time that a person might take morning or evening medication, considering the study design needed to separate the dose-time interval by 12 hours. Study medication was administered by a dry powder device (HandiHaler).

After initial screening, patients entered a 7 day baseline period to ensure clinical stability (no exacerbations). They attended the clinic where spirometric tests were performed 3 hourly over a 24 hour period, at the end of which they received their first morning dose of study medication. They were instructed to take the study medication in the morning (09.00 hours) and evening (21.00 hours) and to record their morning and evening PEF throughout the study in a diary card immediately before administering study medication.

After 6 weeks the patients attended for their second clinic visit. Spirometric assessment began before the administration of the evening dose of medication. Patients remained in the clinic overnight and spirometric tests were again repeated 3 hourly throughout the following day (including overnight measurements and immediately before the morning dose of study medication). Patients were awakened for spirometric testing if necessary.

A continuous 24 ECG (Holter monitor) was recorded during the patients' stay in the clinic at baseline and at 6 weeks. Analysis of the Holter ECG tapes was performed by Hertford Medical BV, Maasdam, The Netherlands by investigators blinded to the purpose of the study. Adverse events were monitored throughout the baseline and 6 week treatment periods.

Study procedures

Baseline spirometric tests were conducted between 08.00 and 12.00 hours. They were conducted in triplicate and met ATS standards of reproducibility.28 The highest values of FEV\textsubscript{1} and FVC from three reproducible tracings were recorded. Identical portable electronic spirometers (Microlab 3300 Spirometer; Micromedical, Kent, UK) were used for all measurements at all centres. Home PEF recordings were made using a Personal Best Peak Flow Meter (Health Scan Products Inc, Cedar Grove, NJ, USA) and were recorded as the best of three efforts in the morning and the evening.

Data analysis

The primary end point was the mean change from baseline in FEV\textsubscript{1} recorded at 03.00 and 06.00 hours on the morning following the last dose of study medication on visit 4 (after 42 (3 days of treatment). Baseline FEV\textsubscript{1} was derived from the measurements recorded at 03.00 and 06.00 hours before the administration of the study drug on visit 2 (day 1). The overall steady state bronchodilator efficacy of tiotropium was determined by the mean FEV\textsubscript{1} response measured over a 24 hour time interval on visit 4. The mean FEV\textsubscript{1} at baseline was calculated as the mean of the 3 hourly readings measured over 24 hours from 09.00 to 09.00 at visit 2. The mean response was defined as the difference between the mean FEV\textsubscript{1} at baseline (visit 2) and the mean FEV\textsubscript{1} at the end of treatment (visit 4).

The sample size calculation was based on data from previous studies of the effect of tiotropium on FEV\textsubscript{1} in COPD.34 Assuming a standard deviation of 0.17 l for FEV\textsubscript{1}, a sample size of 30 patients per treatment group would be sufficient to detect a difference of 0.15 l in FEV\textsubscript{1} between treatment groups at a 5% level of significance and 90% power using a two tailed t-test.

Data are presented as mean (SD) for the population and SE for between-group comparisons. Analysis of covariance with terms for treatment and centre and baseline as a covariate was used as the statistical model for all efficacy analyses. The baseline value was included in the analysis of covariance model as a covariate to adjust for any baseline differences between treatment groups. Patients were excluded from individual analysis if adequate data were not available (for example, missing baseline data). Differences were accepted as being statistically significant at \(p<0.05 \). Circadian variation in peak flow and FEV\textsubscript{1} was calculated as the difference between the highest and lowest values divided by the mean of the values available for that period—that is, all FEV\textsubscript{1} measurements during the 24 hour period and all PEF measurements during the week of study. However, the study was not originally powered to examine circadian variation and the analyses performed for this evaluation were conducted post hoc.

RESULTS

Demographic data

Patient baseline features for the three treatment groups are presented in table 1. The mean age for the groups combined was 65.8 years, 62% were men, and the group mean FEV\textsubscript{1} was 1.08 l (40.8% predicted). The mean smoking history was 44 pack years, with 62% of the total population being ex-smokers. The groups did not differ in their pulmonary function or in their usual pulmonary medication before randomisation (table 1).

Spirometric parameters

Forced expiratory volume in 1 second (FEV\textsubscript{1})

The mean (SE) nocturnal FEV\textsubscript{1} (mean FEV\textsubscript{1} at 03.00 and 06.00 hours) for the Tio-AM, Tio-PM, and placebo groups and the corresponding overall steady state FEV\textsubscript{1} (mean over 24 hours) values are presented in table 2. The differences from placebo in both the morning and evening dosing groups as well as the nocturnal FEV\textsubscript{1} were statistically significant \((p<0.05)\) at all time points on day 42. The baseline 24 hour spirometric recordings showed significant circadian variation in FEV\textsubscript{1} in all three patient groups with the highest values recorded at 09.00 hours on the study day and the lowest values occurring at either 03.00 or 06.00 hours on the following morning (fig 1A). The group mean change in FEV\textsubscript{1} between 09.00 and 03.00 hours at baseline was: −180 ml in Tio-AM, −200 ml in Tio-PM, and −120 ml in the placebo group, corresponding to 03.00 hour absolute values of FEV\textsubscript{1} of 0.88, 0.84, and 0.90 l, respectively. The mean FEV\textsubscript{1} over the 24 hour day was 0.96, 0.95 and 0.96 l for the Tio-AM, Tio-PM, and placebo groups, respectively. The mean circadian variation for each group was 33.3%, 35.6% and 25.9%, respectively. There was considerable intersubject variability and these values did not differ statistically between the groups (ANOVA), but in the pairwise comparisons the variation in the Tio-PM group was higher than in the placebo group \((p=0.03)\). However, the baseline variability before treatment was lower in the placebo group and this might influence the results.

When the FEV\textsubscript{1} profile was repeated after treatment, patients receiving placebo had a lower 24 hour mean FEV\textsubscript{1}
Effect of tiotropium bromide on circadian variation in airflow limitation in COPD

The pattern of nocturnal FVC (mean FVC at 03.00 and 06.00 hours) and overall steady state FVC (mean over 24 hours) was similar to the FEV1 responses, and both tiotropium groups were statistically better than placebo (p = 0.0001). The mean (SE) nocturnal FVC for the Tio-AM, Tio-PM, and placebo groups and the corresponding overall steady state FVC values are presented in Table 3. No statistically significant differences were seen between the two tiotropium dosing groups with respect to the nocturnal FVC (p = 0.61) and overall steady state FVC (p = 0.35). As with FEV1, the FVC profile after 6 weeks of treatment showed that both tiotropium groups were consistently better than the placebo group throughout the 24 hour observation period.

Peak expiratory flow

The mean morning and evening PEF during the baseline period were comparable across the three treatment groups (Table 4). The weekly mean morning and evening PEF for both tiotropium groups was statistically better than placebo (p<0.02, Fig 3). For both tiotropium groups the mean weekly morning and evening PEF increased after 1 week on treatment, and remained consistently better than placebo throughout the 6 weeks of treatment.

Adverse events

COPD exacerbations and upper respiratory tract infections were more common with placebo than with Tio-AM and Tio-PM, although the differences were not statistically significant. Exacerbations of COPD and upper respiratory tract infections were diagnosed by the physician and reported as adverse events. Eight patients (20.0%) in the placebo group had a COPD exacerbation compared with four patients

Table 1
Demographic characteristics of patients at screening (n = 121)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Men (n)</th>
<th>Age (years)*</th>
<th>Duration of COPD (years)*</th>
<th>Baseline spirometry:*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>26</td>
<td>66.1 (6.6)</td>
<td>10.0 (8.5)</td>
<td>1.09 (0.38)</td>
</tr>
<tr>
<td>Tio-AM</td>
<td>21</td>
<td>64.9 (7.7)</td>
<td>12.3 (12.3)</td>
<td>1.12 (0.45)</td>
</tr>
<tr>
<td>Tio-PM</td>
<td>28</td>
<td>66.5 (9.4)</td>
<td>9.9 (7.9)</td>
<td>1.04 (0.33)</td>
</tr>
</tbody>
</table>

*Mean (SD).

Table 2
Mean (SE) nocturnal forced expiratory volume in 1 second (FEV1) and overall steady state FEV1 differences between treatment groups after 6 weeks of study drug

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean (SE)</th>
<th>Comparison</th>
<th>Difference (SE)</th>
<th>p value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nocturnal FEV1 AM</td>
<td>1.03 (0.03)</td>
<td>AM – Placebo</td>
<td>0.21 (0.04)</td>
<td>0.0001</td>
<td>[0.13 to 0.29]</td>
</tr>
<tr>
<td>PM</td>
<td>1.04 (0.03)</td>
<td>PM – Placebo</td>
<td>0.21 (0.04)</td>
<td>0.0001</td>
<td>[0.13 to 0.29]</td>
</tr>
<tr>
<td>Placebo</td>
<td>0.82 (0.03)</td>
<td>AM – PM</td>
<td>–0.01 (0.04)</td>
<td>0.8529</td>
<td>–0.09 to 0.07</td>
</tr>
<tr>
<td>Steady state FEV1 AM</td>
<td>1.11 (0.03)</td>
<td>AM – Placebo</td>
<td>0.21 (0.04)</td>
<td>0.0001</td>
<td>[0.13 to 0.29]</td>
</tr>
<tr>
<td>PM</td>
<td>1.06 (0.03)</td>
<td>PM – Placebo</td>
<td>0.16 (0.04)</td>
<td>0.0001</td>
<td>[0.09 to 0.24]</td>
</tr>
<tr>
<td>Placebo</td>
<td>0.90 (0.03)</td>
<td>AM – PM</td>
<td>0.05 (0.04)</td>
<td>0.2127</td>
<td>–0.03 to 0.12</td>
</tr>
</tbody>
</table>

*Means are adjusted for centre and baseline.
(9.3%) in the Tio-PM group and one (2.6%) in the Tio-AM group. Six patients (15.0%) in the placebo group experienced upper respiratory tract infection compared with three (7.0%) in the Tio-PM group and one (2.6%) in the Tio-AM group. There were no differences in other adverse events in the tiotropium groups compared with the placebo group. Treatment with tiotropium was not associated with cardiac rhythm or heart rate abnormalities as assessed by 24 hour Holter monitoring.

DISCUSSION

Like many other biological variables, airway calibre exhibits a circadian variation during the 24 hour day with maximum values occurring around noon and the minimum values in the early morning. This variability is characteristic of bronchial asthma and is associated with increased levels of inflammatory mediators in the airways during sleep. The practice of defining variability by changes in morning and afternoon values occurring around noon and the minimum in the early hours of the morning. This overall pattern was reproducible over the 6 weeks in the placebo group although the 09.00 value tended to be lower, possibly reflecting differences in the duration of effect of other permitted medications. The FVC data parallel those for FEV1 with no meaningful difference in the FEV1/FVC ratio throughout the 24 hour day, an observation supportive of consistent effort in performing the measurements throughout the day. The mean PEF was lower in the morning than in the evening throughout the 6 weeks in the placebo treated patients, varying by 13–17 l/min. These values are similar to those in the only other study to report patients of similar severity. These mean data mask significant between-week and between-individual variations and highlight the limitation of using measurements of circadian variation where the precise time of measurement is not known.

Lower respiratory system resistance in COPD rises significantly throughout sleep, independent of sleep stage and, although polysomnographic data were not included in the present study, our data are compatible with this. Increased cholinergic tone in the airway smooth muscle is believed to be a major contributor to this process, but data from the COPD patients treated with tiotropium indicate that this may not be the only factor involved. Tiotropium is an effective inhaled anticholinergic drug which can block methacholine challenge in patients with asthma for long periods. The mean FEV1 value over the 24 hour day increased after tiotropium and the absolute FEV1 was always higher at any time point after the active drug than the pretreatment baseline and placebo values. The timing of FEV1 variation also changed, with the highest FEV1 occurring between 12.00 and 00.00 hours.
Effect of tiotropium bromide on circadian variation in airflow limitation in COPD

and 18.00 hours, a pattern closer to that described in healthy individuals. Despite this improvement in absolute FEV₁, the difference between the highest and lowest values during the day was similar after the active drug whenever given and resembled that reported in normal subjects. Whether this is due to changes in airway calibre in areas not reached by the inhaler, to different factors modulating airway smooth muscle activation, or simply differences in the control of lung volume or secretion clearance as proposed elsewhere cannot be resolved by our study.

The data illustrate some of the problems in interpreting bronchial reactivity indices in patients with a low baseline FEV₁. If we relate the change in FEV₁ after tiotropium administered at 09.00 hours to a specific time point as in fig 2, reactivity appears to decline even though the absolute change from maximum to minimum is unaffected. Similar problems arise when other indices recommended in population studies are calculated. This emphasises the need to relate such variables to baseline lung function and helps explain the poor concordance between PEF changes and other measures of bronchial reactivity in patients with COPD.

Although the timing of the dose of some drugs, such as corticosteroids in asthma, may influence the subsequent FEV₁, this was not seen in these studies with tiotropium in COPD. The absolute change in FEV₁ compared with baseline appeared smaller than that reported in some larger trials, but the changes relative to placebo were similar in magnitude. Nevertheless, the timing of the measurements can influence the end points selected. The 03.00 hours value had a mean difference of 220 ml in the Tio-AM and Tio-PM groups compared with placebo, while the 09.00 hours value had a mean difference of 130 and 110 ml, respectively. This dependence on timing may help explain why patients with COPD vary in response to the same drug in different studies.

In summary, we have found that circadian variations in FEV₁ are present in patients with COPD. This is likely to contribute to the disturbed sleep seen in such patients and reflected in their daytime symptoms. Although the absolute change in FEV₁ over 24 hours is close to normal, it comprises a proportionately greater amount of the waking value and this can complicate the interpretation of the usual measures of bronchial responsiveness. Our findings show that tiotropium once daily, whether administered in the morning or evening, results in sustained improvements in spirometric indices throughout the 24 hours, including improvement in the early morning nadir in spirometric values, without necessarily affecting circadian variability.

ACKNOWLEDGEMENTS

The authors acknowledge the contributions of the following investigators who participated in the study: Dr N M Foley, Royal United Hospital, Bath, UK; Dr N K Harrison, Morriston Hospital, Swansea, UK; Dr S J Langley, Wythenshawe Hospital, Manchester, UK; Dr B R O'Driscoll, Hope Hospital, Salford, UK; Dr J A van Noord, De Wever Hospital, Heerlen, The Netherlands; Dr R J White, Frenchay NHS Trust, Bristol, UK; Dr A J Winning, West Middlesex University Hospital, Isleworth, UK.

Table 3 Mean* (SE) nocturnal forced vital capacity (FVC) and overall steady state FVC differences between treatment groups after 6 weeks of study drug

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean (SE)</th>
<th>Comparison</th>
<th>Difference (SE)</th>
<th>p value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nocturnal FVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>1.99 (0.05)</td>
<td>AM – Placebo</td>
<td>0.31 (0.07)</td>
<td>0.0001</td>
<td>(0.18 to 0.45)</td>
</tr>
<tr>
<td>PM</td>
<td>2.02 (0.05)</td>
<td>PM – Placebo</td>
<td>0.35 (0.07)</td>
<td>0.0001</td>
<td>(0.22 to 0.48)</td>
</tr>
<tr>
<td>Placebo</td>
<td>1.68 (0.05)</td>
<td>AM – PM</td>
<td>−0.03 (0.07)</td>
<td>0.6051</td>
<td>(−0.16 to 0.10)</td>
</tr>
<tr>
<td>Steady state FVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>2.12 (0.04)</td>
<td>AM – Placebo</td>
<td>0.32 (0.06)</td>
<td>0.0001</td>
<td>(0.21 to 0.44)</td>
</tr>
<tr>
<td>PM</td>
<td>2.07 (0.04)</td>
<td>PM – Placebo</td>
<td>0.27 (0.06)</td>
<td>0.0001</td>
<td>(0.16 to 0.39)</td>
</tr>
<tr>
<td>Placebo</td>
<td>1.79 (0.04)</td>
<td>AM – PM</td>
<td>0.05 (0.06)</td>
<td>0.3526</td>
<td>(−0.06 to 0.16)</td>
</tr>
</tbody>
</table>

*Means are adjusted for centre and baseline.

Table 4 Mean (SE) baseline weekly means for morning (PEF am) and evening (PEF pm) peak expiratory flow rates (l/min)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean (SE)</th>
<th>Comparison</th>
<th>Difference (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropium pm (n = 40)</td>
<td>209 (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiotropium am (n = 37)</td>
<td>195 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo (n = 34)</td>
<td>217 (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEF am</td>
<td>209 (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEF pm</td>
<td>225 (12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 The mean of the weekly means for (A) morning and (B) evening PEF (l/min) over 6 weeks of treatment with either tiotropium in the evening (pm), tiotropium in the morning (am), or placebo.
The study was supported by Boehringer Ingelheim Pharmaceuticals Inc.

REFERENCES

Effect of tiotropium bromide on circadian variation in airflow limitation in chronic obstructive pulmonary disease

P M A Calverley, A Lee, L Towse, J van Noord, T J Witek and S Kelsen

Thorax 2003 58: 855-860
doi: 10.1136/thorax.58.10.855

Updated information and services can be found at:
http://thorax.bmj.com/content/58/10/855

These include:

Supplementary Material
Supplementary material can be found at:
http://thorax.bmj.com/content/suppl/2003/12/01/58.10.855.DC1

References
This article cites 34 articles, 8 of which you can access for free at:
http://thorax.bmj.com/content/58/10/855#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Airway biology (1100)
Clinical trials (epidemiology) (557)
Lung function (773)

Notes