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Adenosine is a purine nucleoside which mediates a
variety of cellular responses relevant to asthma and
COPD through interaction with specific receptors.
Administration of adenosine by inhalation to patients
with asthma and COPD is known to cause concentration
related bronchoconstriction. Responses elicited by this
purine derivative in asthma and COPD should not be
considered as a mere reflection of non-specific airways
hyperresponsiveness. Evaluation of airways
responsiveness by adenosine induced
bronchoconstriction may be valuable in differentiating
asthma from COPD, monitoring of anti-inflammatory
treatment in asthma, surveying disease progression, and
assessing disease activity in relation to allergic airways
inflammation.
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Adenosine is a purine nucleoside which has
the capacity to elicit a variety of cellular
responses relevant to asthma and chronic

obstructive pulmonary disease (COPD) through
interaction with specific cell surface purinorecep-
tors as indicated by the ability of the adenosine
uptake inhibitor, dipyridamole, to enhance ad-
enosine induced effects.1–3 On the basis of
molecular cloning and ligand affinity data,
adenosine receptors are currently classified into
four subtypes—A1, A2A, A2B, and A3—each with
their unique patterns of tissue distribution and
signal transduction.4 5

In 1983 Cushley et al6 were the first to adminis-
ter aerosolised adenosine to a group of asthmatic
subjects. Whereas the nucleoside had no discern-
ible effect on airway calibre in normal individuals,
the asthmatics experienced concentration related
bronchoconstriction with a maximum effect at 5
minutes and subsequent slow recovery that was
complete by 45–60 minutes.6 Ten years later Oost-
erhoff et al7 reported hyperresponsiveness to
adenosine administered by inhalation in 28 out of
30 patients with COPD. The severity of their
response was significantly higher in the patients
with COPD who smoked than in the non-
smoking COPD patients, whereas no discernible
difference in methacholine hyperresponsiveness
was observed between the two groups.

Since these initial observations, a role for
adenosine in asthma and COPD has been
postulated and there have been several reviews
which have set out in detail the key evidence sup-

porting this view.8–10 Elucidation of the fine

mechanisms of adenosine induced bronchocon-

striction has provided convincing evidence that

responses elicited by this purine derivative in

asthma and COPD are not a mere reflection of

non-specific airways hyperresponsiveness but

involve a selective interaction with activated

inflammatory and structural cells.

This paper reviews the mechanism(s) by which

adenosine mediates bronchoconstriction in

asthma and COPD, the evidence in favour of the

hypothesis that airway response to adenosine

may better discriminate the inflammatory and

immunological processes in asthma and COPD,

and the possibility that adenosine responsiveness

may represent a distinctive marker of disease

severity and progression.

MECHANISM OF ADENOSINE INDUCED
BRONCHOCONSTRICTION IN ASTHMA
AND COPD
Despite the evidence that inhaled purine deriva-

tives elicit dose related bronchoconstriction in

patients with asthma and COPD,6 7 the action of

adenosine on airway smooth muscle in vitro is

conflicting, varying between species and, in the

same species, varying with the type of prepara-

tion, the initial level of smooth muscle tone, and

the concentration of the nucleoside used. In

isolated guinea pig airway with high resting tone

induced by carbachol, adenosine causes relaxa-

tion via an A2 receptor mechanism,11 12 whereas

constriction occurs when the preparation is

maintained at intrinsic tone.13 In isolated human

airway preparations the predominant effect of the

nucleoside is contractile, although the effect is

weak.14 However, bronchial preparations obtained

from asthmatic subjects were more sensitive to

the contractile effects of adenosine than those

obtained from non-asthmatic controls,15 and

when inhaled by asthmatics adenosine provoked

bronchoconstriction that was not elicited in

normal individuals.6

The adenosine nucleotides AMP and ADP are

equipotent with the parent nucleoside.16 As

neither has any effect on adenosine receptors,17

but both can be rapidly converted to adenosine by

5′-nucleotidase, it is likely that these nucleotides

act in vivo after prior conversion to adenosine.

Since AMP in particular is more soluble in aque-

ous solution, allowing higher concentrations of

agonist to be delivered by aerosolisation, it has

replaced adenosine as the most frequently used

purine nucleoside bronchoprovoking agent.
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Since these observations were made, considerable effort has
been directed at elucidating the mechanism by which adeno-
sine mediates bronchoconstriction in asthma and COPD.
Although no adenosine antagonists have acceptance for use in
humans, alternative pharmacological approaches have sug-
gested that it is unlikely that adenosine acts directly on
smooth muscle cells in vivo, but indirectly through activation
of purinoreceptors expressed on intermediary inflammatory
cells such as mast cells or on afferent nerve endings.

It has long been recognised that mediator release from
human mast cells contributes to the airflow limitation and
accompanying symptoms of asthma.18 In active disease,
immunohistochemical and altered structural analysis of sub-
mucosal and epithelial mast cells reveals that many of them
are actively degranulating.18 19 The role of the mast cell in the
pathogenesis of COPD is more speculative. Increased levels of
histamine have been found in the sputum of patients with
obstructive bronchitis20 and Postma et al21 have reported an
increase in the urinary excretion of the N-methyl metabolite
of histamine in the urine of patients with COPD. Lamb et al22

have also reported a greater number of mast cells in the respi-
ratory epithelium in the distal airways of smokers than in
non-smokers. Immunohistochemical analysis of bronchial
mucosa obtained from patients with COPD reveals that larger
numbers of mast cells are present in the bronchiolar
epithelium than in the airways of smokers without airway
obstruction.23 Likewise, Pesci et al, who studied mast cell infil-
tration in bronchial biopsy specimens of subjects with chronic
bronchitis, observed higher numbers of mast cells both in the
epithelium and in the bronchial glands than in control
subjects.24 Relevant to this are the findings of de Boer et al25

who have recently shown that the number of mast cells in the
bronchiolar epithelium of COPD patients is strongly associ-
ated with the increased level of expression for epithelial
transforming growth factor (TGF)β1, a well known chemotac-
tic factor for mast cells.26 Mediator secretion released from
mast cells during the active “inflammatory” phase of COPD
may therefore contribute to its airway pathophysiology.
Indeed, mast cells may release chemotactic factors for
neutrophils and secrete proteases—for example, tryptase,
chymase, elastase—which are able to induce tissue injury,27

airway smooth muscle hyperresponsiveness,28 and airway
mucus secretion.29

Mast cells are likely to play a critical role in the
bronchoconstrictor response to inhaled adenosine as indicated
by in vitro studies in which adenosine markedly enhances the
release of histamine and other preformed mediators from
immunologically primed rodent mast cells.30 The timing of
adenosine addition seems quite critical to the effect produced,
and pharmacological manipulations have suggested involve-
ment of the A2B receptor.31 A series of studies in human
dispersed lung mast cells by Church et al32 and Peachell et al33

have shown similar effects, including a small potentiation of
leukotriene C4 release in the latter study. Feoktistov and Biag-
gioni have since shown that stimulation of the A2B receptor in
a human mast cell line in vitro produces cellular activation,
and that phosphoinositide hydrolysis and intracellular cal-
cium mobilisation are involved in this process.34 Most of the
above mentioned studies refer to mast cells obtained by either
mechanical dispersion or enzymatic digestion of whole lung.
In a recent study Forsythe et al35 have produced evidence that
adenosine can directly stimulate histamine release from
human mast cells obtained by bronchoalveolar lavage.

There is also abundant evidence in vivo to indicate that the
mast cell may be involved in the bronchoconstrictor response
to inhaled adenosine, principally via release of granule derived
preformed mediators. Premedication with the potent H1 hista-
mine receptor antagonists terfenadine and astemizole have
been shown to inhibit the acute bronchoconstrictor response
to inhaled AMP in asthmatic and COPD patients.36–39 These
initial studies provided strong support for the concept that

mast cell derived mediators are implicated in the bronchocon-

strictor response to inhaled adenosine in both asthma and

COPD. More direct evidence that histamine released from air-

way mast cells is critical for adenosine induced responses has

come from a study in which venous plasma histamine levels

were measured after bronchial provocation with inhaled aller-

gen and AMP in a group of atopic subjects. A small but

significant increase in histamine levels was observed after

AMP challenge.40 Direct instillation of AMP into asthmatic

bronchi41 or into the nose of patients with allergic rhinitis42

resulted in significant increases in the concentration of hista-

mine and tryptase in their lavage fluid. However, in addition to

histamine, a role for other mast cell derived mediators has to

be considered. A role for prostanoids in the response to AMP

is supported by the demonstration that potent cyclooxygenase

inhibitors such as indomethacin and flurbiprofen attenuate

the constrictor effect of the nucleotide.43 44 In addition, lysine-

aspirin administered by inhalation causes some attenuation of

the AMP response.45 More direct evidence for a role for newly

generated mediators has come from the study by Polosa et
al.41 In addition to the rise in histamine and tryptase levels in

the bronchoalveolar lavage fluid, an even greater increase in

concentrations of PGD2 were found. Recently, premedication

with ABT-761,46 a potent 5-lipoxygenase inhibitor, and the

selective cysteinyl leukotriene (Cys LT1) receptor antagonist

montelukast47 has been shown to attenuate the acute

bronchoconstrictor response to inhaled AMP, thus suggesting

a role for spasmogenic leukotrienes.

Although activation of both cholinergic48 and peptidergic

neural pathways49 may contribute to the contractile airway

response to adenosine in asthma, the role of the neural path-

way in adenosine induced bronchoconstriction in patients

with COPD has not been fully addressed. In a recent study

Reutgers et al36 found no significant effect on AMP responsive-

ness after inhaled ipratropium bromide in patients with

COPD, implying that vagal nerve activation does not play a

role. This is at variance with the findings in asthmatic

patients, where ipratropium bromide caused a significant

increase in PC20AMP.48 It is possible that in asthma AMP

stimulates mast cells to release histamine which causes an

additive effect via vagal nerve stimulation. In COPD, histamine

release may be smaller and inadequate to stimulate vagal

nerve endings during AMP challenge.

CLINICAL VALUE OF AIRWAY RESPONSIVENESS TO
ADENOSINE IN ASTHMA AND COPD
Airway or “bronchial” hyperresponsiveness (BHR) is best

defined as airways that narrow too much to a provoking

stimulus.50 Although BHR is well established as a hallmark of

asthma, the clinical and diagnostic relevance of airway

responsiveness as currently defined is still unclear. BHR is

neither sensitive nor specific for asthma,51 as it is also detected

in approximately two thirds of smokers with COPD52 and in

various other inflammatory airway diseases such as cystic

fibrosis,53 bronchiectasis,54 and Sjogren’s syndrome.55 56 Despite

this lack of specificity and sensitivity, it remains an important

physiological marker in diagnosing and determining asthma

severity.

The provoking stimuli can be classified into two categories:

(1) those that act predominantly directly on airway smooth

muscle such as histamine and methacholine; and (2) those

that act indirectly through the release of inflammatory

mediators or stimulation of neural pathways such as adenos-

ine. Airway hyperresponsiveness is often linked to the degree

of airway inflammation and this is reflected by the number

and state of activation of various inflammatory cells.57–59 At

present there is no single effective marker of the underlying

inflammatory process in the lungs, but various surrogate

markers have been used to reflect the severity of airway

inflammation. The non-invasive technique of measuring BHR
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using either a direct or indirect stimuli may provide us with
more information about the inflammatory process and enable
us to differentiate between different disease processes.

As illustrated previously, adenosine is an indirect stimulus
that exerts its effect primarily on inflammatory cells,
subsequently leading to smooth muscle contraction. This dis-
tinctive feature of adenosine suggests that AMP responsive-
ness may correlate better than other stimuli with airway
inflammation, enabling superior diagnostic discrimination
between asthma and COPD and allowing better monitoring of
disease activity and progression. It should also be noted that
AMP challenge testing would be useful in evaluating response
to treatment.

Although there is not enough information to establish clear
indications for AMP challenge testing and a standardised
population based cut off PC20 AMP value needs to be
delineated, airway responsiveness to AMP may be used to dif-
ferentiate asthma from COPD when traditional diagnostic
methods have not established a clear diagnosis. In addition, it
appears that bronchoprovocation with AMP may be a more
robust marker of disease activity in relation to allergic airway
inflammation than other non-specific stimuli such as hista-
mine or methacholine and has a greater probability than
methacholine for the diagnosis of asthma.8 AMP challenge
may also be used as a practical tool in determining bronchial
hyperresponsiveness in epidemiological surveys as described
by De Meer and colleagues using the short dosimeter protocol
method of AMP challenge.60

Atopy is the single most important determinant of
enhanced adenosine induced responses in vivo. Phillips et al40

have shown that atopic subjects are more responsive than
non-atopic controls to inhaled adenosine than they are to
methacholine, indicating that the airway response to these
purines may be an index of mast cell priming. In this context,
it is of interest that adenosine potentiates the release of
inflammatory mediators when human mast cells are immu-
nologically primed in vitro.33 61 Increased adenosine respon-
siveness in the form of heightened histamine release has also
been shown in sensitised mice compared with non-sensitised
controls.62 Moreover, nasal challenge with AMP elicits rhinitic
symptoms and a rapid increase in histamine levels in the lav-
age fluid with a greater increase occurring in atopic than in
non-atopic individuals.36 Adenosine induced bronchoconstric-
tion in asthmatic and atopic subjects may therefore be used as
an index of mast cell priming in vivo. The role of atopy in
adenosine induced bronchoconstriction is also emphasised in
a recent study by van Daele et al.63 These authors compared
histamine and AMP bronchial challenges in preschool
children with recurrent wheeze to identify atopic mechanisms
for their wheezing and found that all non-atopic children with
wheeze had a negative adenosine provocation test. Adenosine
bronchoprovocation testing is therefore more specific than
histamine in establishing allergic factors in preschool children
with wheeze.

There is mounting evidence that adenosine challenges
could possibly be more exploited in differentiating asthma
from COPD in subjects where the diagnosis is clinically uncer-
tain. In adults, AMP and methacholine provocation both dis-
tinguish subjects with COPD from normal controls. However,
only AMP could separate non-smoking COPD patients from
asthmatic patients. In the COPD patients who smoked, AMP
responsiveness was similar to that found in asthmatic
patients, perhaps as a result of the additional inflammatory
effect of cigarette smoking.7 In children, bronchoprovocation
tests with inhaled AMP appears to be considerably more spe-
cific and sensitive than methacholine at discriminating
asthma from paediatric chronic obstructive lung disorders
such as cystic fibrosis, bronchiolitis, pulmonary ciliary dyski-
nesia, and bronchiectasis.64 The mechanism underlying bron-
chial hyperresponsiveness may very between asthma, COPD,
and other diseases which also have a component of BHR. A

study investigating the bronchial responsiveness profile
produced by AMP, methacholine, and cold air in subjects with
asthma and Sjogren’s syndrome suggested that more than one
challenge may be required to detect different aspects of bron-
chial responsiveness. Atopic asthmatic subjects were signifi-
cantly more responsive to AMP than non-atopic subjects and
patients with Sjogren’s syndrome.65 From a practical stand-
point we speculate that AMP challenge becomes useful only
when the diagnosis of asthma or COPD is clinically uncertain.
However, it is clear that more population based epidemiologi-
cal studies are needed to determine how valuable is adenosine
responsiveness in differentiating asthma from COPD.

The view that adenosine responsiveness may be used as a
specific marker of disease activity with a closer relationship to
allergic airway inflammation than histamine or methacholine
has been addressed in a number of clinical studies. This
feature could be exploited in the clinical setting to differenti-
ate better asthma from COPD when traditional diagnostic
methods have not established a clear diagnosis. In subjects
with active allergic rhinitis we have recently shown that
airways responsiveness to AMP, but not methacholine, is
strongly correlated to sputum eosinophilia.66 Exhaled nitric
oxide (eNO) is increasingly being used as a marker of airway
inflammation and, in a study by van den Toorn et al, a signifi-
cant correlation could be established between eNO and
responsiveness to AMP, but not between eNO and responsive-
ness to methacholine.67 A recent study by van den Berge and
colleagues also supported previous findings that PC20 AMP is a
better marker of airway inflammation than PC20

methacholine.68 One hundred and twenty atopic asthmatics
underwent bronchial provocation testing with methacholine
and AMP, as well as sputum induction, blood samples, and
measurement of NO in exhaled air. PC20 AMP provided a bet-
ter reflection of airway inflammation than PC20 methacholine
since the percentage of sputum eosinophils explained 25% of
the variance in PC20 AMP while it was not a significant
independent predictor for PC20 methacholine. In non-smoking
patients with COPD hyperresponsiveness to AMP was also
related to increased percentages of eosinophils in induced
sputum and increased numbers of mucosal CD8+ cells in
bronchial biopsy specimens, thereby reflecting the close
association between AMP hyperresponsiveness and airway
inflammation in COPD.69

A series of clinical studies have confirmed the potential
usefulness of AMP in detecting inflammatory changes in
adult and paediatric asthma. Various investigations have
shown a pronounced improvement in AMP responsiveness
compared with methacholine or histamine after allergen
avoidance, suggesting reduced airway inflammation following
avoidance of aeroallergens.70–72 Doull et al73 have shown that
regular treatment of asthmatic children with the inhaled
corticosteroid beclomethasone dipropionate results in a
significant reduction in AMP but not methacholine or brady-
kinin responsiveness. This finding confirms earlier observa-
tions that regular treatment with inhaled budesonide resulted
in greater attenuation of the airway response to AMP than to
methacholine.74–76 In asthma the ability of this test to discrimi-
nate changes in airway reactivity with anti-inflammatory
treatment better than histamine or methacholine has also
been validated with inhaled ciclesonide, mometasone, and
fluticasone propionate,77–80 as well as with oral prednisolone.80

More recently, Ketchell et al have reported that sensitive
prediction of the AMP response to inhaled corticosteroids is
already apparent as early as 48 hours81 and have reported sig-
nificant attenuation of airway responsiveness to AMP within 2
hours of a single dose of fluticasone propionate.82 In contrast,
in patients with COPD adenosine appears to be as insensitive
as methacholine in detecting changes in airway reactivity after
treatment with high dose inhaled steroids.83 This distinctive
feature is of diagnostic interest as it may indicate an additional
way by which adenosine challenge may be useful in discrimi-
nating asthma from “true” COPD.
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The recent work by van den Berge et al84 showing greater

improvement in BHR for AMP than for methacholine after

treatment with corticosteroids underscores the view that air-

way responsiveness to AMP may also be used as a sensitive

marker to monitor the effects of steroid therapy in asthma.

Perhaps a limitation of this study is that airway responsive-

ness was recorded at a single time point after only 2 weeks of

treatment with corticosteroids. Only longitudinal studies can

better define a role for AMP challenge testing in the

assessment of anti-inflammatory therapy in asthma. We have

recently examined the time course of change in sputum cellu-

larity and in bronchial reactivity to inhaled AMP and metha-

choline after administration of inhaled budesonide (800 µg/

day) in 10 asthmatic patients.85 Treatment with budesonide

significantly reduced the airway responsiveness to AMP as

early as by the first week of treatment, whereas changes in

methacholine airway responsiveness and in sputum cellular-

ity could be observed only by the fourth week of treatment.

These findings emphasise the superior sensitivity profile of

AMP challenge testing in evaluating airways response to anti-

inflammatory therapy. However, this should be discussed

against the evidence that other non-invasive putative markers

(such as exhaled NO) may be as sensitive as AMP challenge

testing in monitoring glucocorticoid responsiveness in

asthma.

There is substantial evidence that adenosine is a better

marker of airway allergic inflammation than the direct stimuli

histamine or methacholine, but whether it is closely related to

disease severity needs to be further explored. Avital et al86

compared exercise, methacholine, and AMP in 135 children

and young adults. They concluded that the sensitivities of

AMP and methacholine challenges in the detection of

bronchial hyperreactivity were very similar, but that metha-

choline was better at discriminating between mild and

moderate asthma than AMP. This finding was also confirmed

in a retrospective analysis of 487 adult asthmatic patients.87

Methacholine and AMP challenges were compared as screen-

ing tools and any relationships between BHR and disease

severity markers identified. The results suggested that metha-

choline was a more appropriate screening tool for BHR than

AMP in their population and was related to asthma severity.

From these two studies adenosine does not seem to be a good

indicator of disease severity but further clinical trials are

needed to confirm this. However, since airway response to

direct stimuli is more strictly related to the actual degree of

airway constriction than inflammation, it is not surprising

that AMP does not serve as a valuable tool for monitoring dis-

ease severity.

CONCLUDING REMARKS
The mechanism of airway hyperresponsiveness to adenosine/

AMP has now been largely elucidated, although some

questions remain. The available evidence clearly indicates that

AMP challenge has a distinctive ability to probe immunologi-

cal as well as non-specific responsiveness in asthma and COPD

and, in this regard, can be expected to yield important and

clinically relevant results in the future. Moreover, broncho-

provocation testing with adenosine offers substantial advan-

tages (especially in term of sensitivity) over other non-

invasive tests including induced sputum. The premise for this

is that adenosine elicits bronchoconstriction by stimulating

the release of bronchoconstrictor mediators from cells/nerves

within the airway and thus may be sensitive to the underlying

inflammatory state of the airway. However, BHR to direct

stimuli such as methacholine remains an exceptionally sensi-

tive diagnostic test and, as such, it serves well to exclude dis-

ease. By contrast, because of its superior specificity, BHR to

inhaled AMP may be preferred to confirm a diagnosis of

asthma.

Current GINA guidelines recommend careful monitoring of

asthma symptoms and pulmonary function and recognise the

need for “developing noninvasive test(s) of airway inflamma-

tion for use in diagnosis, monitoring the disorder’s activity, and

evaluating treatments”. Based on the emerging evidence,

adenosine bronchoprovocation testing can be put forward as

being useful in differentiating allergic asthma from COPD and

for monitoring airway inflammatory changes in adult and pae-

diatric asthma. In particular, serial measurements of adenosine

airway responsiveness may, in future, become of increased value

in monitoring anti-inflammatory effects of asthma treatment.

However, well planned and well conducted large clinical trials

are needed to show that information gained from this test will

lead to improved patient management.
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