γδ T lymphocytes in the peripheral blood of patients with tuberculosis with and without HIV co-infection

A C C Carvalho, A Matteelli, P Airò, S Tedoldi, C Casalini, L Imberti, G P Cadeo, A Beltrame, G Carosi

Background: Several recent studies suggest that γδ T lymphocytes play an important role in immunity against Mycobacterium tuberculosis. However, the dynamics of these cells in the peripheral blood of patients with tuberculosis (TB) with and without HIV infection is not fully understood. A study was undertaken to evaluate the profile of the γδ T cell population in patients at the time the diagnosis of TB was established.

Methods: A cross sectional study was performed in consecutive TB patients from the Department of Infectious Diseases, Spedali Civili, Brescia. CD4+, CD8+ and Vδ1 and Vδ2 T cell counts were analysed. Lymphocyte surface membrane expression was evaluated with the FITC-TCRγδ, -Vδ1, -Vδ2 and PE-Vδ1 monoclonal antibodies. Blood donors and HIV seropositive asymptomatic individuals acted as controls.

Results: Seventy four TB patients were evaluated, 20 of whom (27%) were co-infected with HIV. HIV seronegative TB patients (n=54) had total γδ T cells and Vδ1 subsets comparable to those in blood donors (n=39). However, the percentage with the Vδ2 subset was significantly lower in patients with TB than in controls (median 1.5 v 2.1; p=0.05). Responsiveness to PPD was not associated with pre-dominance of a specific γδ T cell subset. HIV seropositive individuals had a decreased percentage of circulating Vδ2 cells at a level similar to that in HIV seronegative TB patients, regardless of the presence of active TB.

Conclusions: HIV seronegative TB patients and HIV infected individuals (with or without active TB) have a reduced number of circulating Vδ2 T cells compared with healthy individuals. Whether TB and HIV infection share a common mechanism causing Vδ2 T cell depletion still needs to be established.
RESULTS

During the study period 74 patients with TB were evaluated, 20 (27%) of whom were co-infected with HIV. There were 54 (73%) men, the median age was 32 years, and 55 (74%) were foreign born patients. Foreign born patients represented a significantly higher proportion of HIV negative patients (45/54; 83%) than HIV positive patients (10/20; 50%; p=0.006). Pulmonary TB was the most common clinical presentation (63.5%). In the HIV seropositive TB patients the median CD4+ cell count was 268 cells/mm³ (range 15–623); seven (35%) had values of ≤200 cells/mm³. Table 1 summarises the demographic and clinical characteristics of the study patients.

The relative proportions (median percentage) of total lymphocytes, CD4+, CD8+, γδ T cells, and Vδ1 and Vδ2 subsets among TB patients and controls is shown in Table 2. Figure 1 represents the distribution of γδ T cells in TB patients and controls.

As expected, there was a lower proportion of CD4+ T lymphocytes and a higher proportion of CD8+ T lymphocytes in HIV seropositive than in HIV seronegative TB patients. Moreover, HIV seropositive TB patients had a similar proportion of Vδ2 subsets as HIV seronegative TB patients, but a statistically significant increase in the proportion of Vδ1 T cells (p=0.04, table 2). Similarly, there was no difference in the proportions of Vδ2 subsets between asymptomatic HIV seropositive and HIV seronegative TB patients (p=0.10), but the former had a higher proportion of Vδ1 T cells (p=0.02, table 2).

Patients with TB with a positive PPD skin test had a lower total lymphocyte count than those with a positive skin test. However, when the γδ T proportions were compared, no

The percentage of total γδ T cells and Vδ1 and Vδ2 subsets was similar in HIV positive TB patients and HIV positive asymptomatic patients. Both groups had higher proportions of Vδ1 and lower proportions of Vδ2 subsets than healthy blood donors (p<0.02). There was a statistically significant difference in the percentages of Vδ1 and Vδ2 subsets between all groups (p=0.002 and p=0.02, respectively) that was not observed for total γδ T cells (p=0.60). Figure 1 represents the distribution of γδ T cells in TB patients and controls.

The relative proportions (median percentage) of total lymphocytes, CD4+, CD8+ and γδ T cells with Vδ1 and Vδ2 subsets as HIV seronegative and seropositive TB patients were compared with those of 39 healthy blood donors and nine HIV seropositive asymptomatic patients (table 2). HIV seronegative TB patients had lower total lymphocyte and CD4+ proportions than healthy blood donors but similar total γδ T cell and Vδ1 subset proportions. However, a statistically significant reduction in circulating Vδ2 T cells was observed in HIV negative TB patients (1.5) compared with healthy blood donors (2.1, p=0.05).

Table 1 Demographic and clinical features of HIV infected and non-infected patients with TB

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All patients (n=74)</th>
<th>TB HIV+ (n=20)</th>
<th>TB HIV– (n=54)</th>
<th>p value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (range) age (years)</td>
<td>32 (278)</td>
<td>35 (6-44)</td>
<td>31 (2-78)</td>
<td>0.67</td>
</tr>
<tr>
<td>Male (%)</td>
<td>54 (73)</td>
<td>15 (75)</td>
<td>39 (72)</td>
<td>1.0</td>
</tr>
<tr>
<td>Foreign (%)</td>
<td>55 (74)</td>
<td>10 (50)</td>
<td>45 (83)</td>
<td>0.006</td>
</tr>
<tr>
<td>PPD positivity (%)</td>
<td>34 (72)</td>
<td>11 (79)</td>
<td>23 (70)</td>
<td>0.73</td>
</tr>
<tr>
<td>Pulmonary TB (%)</td>
<td>47 (63.5)</td>
<td>16 (80)</td>
<td>31 (57)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

* n=47; † χ² test except for comparison of ages (Mann-Whitney U test).

Table 2 Median (range) percentage of total lymphocytes, CD4+, CD8+, γδ T cells, and Vδ1 and Vδ2 subsets among TB patients and controls

<table>
<thead>
<tr>
<th>Cell population</th>
<th>TB HIV+ (n=20)</th>
<th>HIV+ asymptomatic (n=9)</th>
<th>p value*</th>
<th>TB HIV– (n=54)</th>
<th>Blood donors (n=39)</th>
<th>p value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total lymphocytes</td>
<td>22.0 (4.6–77.0)</td>
<td>20.4 (6.8–68.0)</td>
<td>0.85</td>
<td>23.8 (5.4–65.0)</td>
<td>34.5 (24.8–47.9)</td>
<td><0.0005</td>
</tr>
<tr>
<td>CD4+</td>
<td>15.0 (1.2–38.0)</td>
<td>12.6 (2.6–38.7)</td>
<td>0.73</td>
<td>43.1 (3.4–57.3)</td>
<td>46.1 (36.9–60.9)</td>
<td>0.05</td>
</tr>
<tr>
<td>CD8+</td>
<td>56.6 (33.7–72.3)</td>
<td>62.1 (4.1–78.8)</td>
<td>0.5</td>
<td>24.5 (6.1–68.2)</td>
<td>24.5 (14.5–37.7)</td>
<td>0.92</td>
</tr>
<tr>
<td>Total γδ T cells</td>
<td>4.2 (2.0–12.3)</td>
<td>3.7 (1.8–9.8)</td>
<td>0.32</td>
<td>3.35 (0.7–11.9)</td>
<td>4.0 (8.8–15.3)</td>
<td>0.16</td>
</tr>
<tr>
<td>Vδ1</td>
<td>1.75 (0.9–11.3)</td>
<td>1.8 (0.9–6.3)</td>
<td>0.83</td>
<td>1.0 (0.1–6.3)</td>
<td>0.9 (0.1–6.8)</td>
<td>0.75</td>
</tr>
<tr>
<td>Vδ2</td>
<td>1.05 (0.3–3.9)</td>
<td>0.9 (0.3–3.7)</td>
<td>0.34</td>
<td>1.5 (0.2–11.8)</td>
<td>2.1 (0.5–13.4)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

*Mann-Whitney U test comparing HIV+TB patients and HIV+ asymptomatic patients; †Mann-Whitney U test comparing HIV– TB patients and blood donors; ‡n=23 for total lymphocytes, CD4+ and CD8+ cell counts.
significant difference in the γδ T cell proportions was seen between PPD positive and PPD negative TB patients (table 3). When only HIV seronegative TB patients were analysed, no significant differences in γδ T cell proportions associated with different PPD responses were observed (p>0.05).

DISCUSSION

The aim of this study was to evaluate the population of γδ T lymphocytes in the peripheral blood of TB patients in an attempt to offer new insights into the role played by these cells in immunity against *M. tuberculosis*. TB patients, independent of HIV serological status, had a reduced proportion of circulating Vδ2 subsets compared with healthy controls. This observation confirms and expands the findings of Li and coworkers who reported a significant reduction in the proportion of the Vδ2 subset among circulating γδ T cells of TB patients, postulating a quantitative reduction of this subpopulation. Other studies which have found no variations in the γδ T cells of TB patients have reported on total γδ T cells but did not measure the Vδ2 subset. All these data are consistent with our findings: it is the Vδ2 subpopulation which is specifically affected, but it does not result in significant changes in the proportion of total γδ T cells. Our data differ from those of a recent report by Dieli and coworkers who analysed the whole γδ T cell population and its δ2 subset and reported similar proportions in PPD positive children with TB and in healthy PPD positive and PPD negative children. These data, however, were obtained in a paediatric population and biological differences between children and adults may account for the difference in the results.

On the other hand, some studies have reported an increase in the proportion of γδ T cells in the peripheral blood of TB patients. However, in one study the percentage of γδ T cells was in the normal range reported in the literature while the comparison groups had abnormally low levels. In another study the sample size was small, with few cases with abnormally high levels of γδ T cells.

The interaction of γδ T lymphocytes and the tuberculin skin response is not clear. Barnes found a greater response of the γδ T cell population to mycobacterial antigens in healthy PPD positive individuals and patients with pleuritis than in those with pulmonary or miliary tuberculosis, supporting the hypothesis that the increase in the γδ T cell population could be associated with protective immunity. The level of circulating Vδ2 T cells in HIV seropositive individuals, regardless of the presence of active TB disease, was similar to that in TB patients without HIV infection. All HIV seropositive subjects had a non-specific increase in the Vδ1 cell subset, a decrease in the Vδ2 subset, and an inversion of the Vδ1/Vδ2 proportions. These results agree with those described by other authors who have consistently reported inverted Vδ1/Vδ2 proportions with an increase in the Vδ1 cell population. Whether the non-specific decrease in Vδ2 T cells in HIV seropositive subjects has an adjunctive role to CD4+ T lymphocyte dysfunction in the increased susceptibility of HIV infected subjects to TB disease is unclear. HIV and TB infection could carry or induce common ligands resulting in a sustained activation of Vδ2 cells, followed by a reduction in this cell subset by spontaneous and activation induced apoptosis. Whether the non-specific decrease in Vδ2 T cells in HIV seropositive subjects has an adjunctive role to CD4+ T lymphocyte dysfunction in the increased susceptibility of HIV infected subjects to TB disease is unclear. HIV and TB infection could carry or induce common ligands resulting in a reduction rather than an increase in the Vδ2 T cell population, but this hypothesis still needs to be tested.

Our study could not establish whether the reduction in the Vδ2 subset of γδ T cells is a predisposing factor to the development of TB or is a consequence of mycobacterial infection itself. Ellner described the presence of *M. tuberculosis* specific suppressor monocytes in some TB patients that could more selectively inhibit antigen induced proliferation of γδ T cells. The sequestration of reactive γδ T lymphocytes in the TB site of disease is another possible explanation for the reduction in the Vδ2 subpopulation in the peripheral blood of patients with TB.

We did not measure the γδ T cell response to mycobacterial antigens nor the presence of activation markers in the peripheral blood of TB patients. We therefore cannot affirm that the quantitative changes seen in γδ T cells correspond to functional derangement of this lymphocyte population. Further studies in a larger number of patients, with follow up evaluations and qualitative analysis of the γδ T cell population in response to mycobacterial infection, could contribute to our understanding of the function of this lymphocyte subset in immunity against *M. tuberculosis*.

ACKNOWLEDGEMENT

This study received financial support from III Programma Nazionale di Ricerca sull’AIDS, Istituto Superiore di Sanità, Rome, Italy (contract 508.6).

Authors’ affiliations

A C C Carvalho, Unidade de Pesquisa em Tuberculose, Serviço de Pneumologia, Hospital Universitário Clementino Fraga Filho/Universidade Federal do Rio de Janeiro (HUCFF/UFRJ), Rio de Janeiro, Brazil.
REFERENCES

γδ T lymphocytes in the peripheral blood of patients with tuberculosis with and without HIV co-infection
A C C Carvalho, A Matteelli, P Airò, S Tedoldi, C Casalini, L Imberti, G P Cadeo, A Beltrame and G Carosi

Thorax 2002 57: 357-360
doi: 10.1136/thorax.57.4.357

Updated information and services can be found at:
http://thorax.bmj.com/content/57/4/357

These include:
References
This article cites 17 articles, 11 of which you can access for free at:
http://thorax.bmj.com/content/57/4/357#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Drugs: infectious diseases (968)
HIV/AIDS (194)
Epidemiologic studies (1829)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/