Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids

R H Green, C E Brightling, G Woltmann, D Parker, A J Wardlaw, I D Pavord

Background: The debate as to whether asthma is a single or heterogeneous disease remains unresolved although pathological studies, mostly using fibreoptic bronchoscopy on small numbers of subjects, have emphasised the similarities between different clinical phenotypes.

Methods: Lower airway inflammation was assessed non-invasively using induced sputum in 34 normal controls and 259 adults with symptomatic asthma receiving treatment at steps 1–3 of the British Thoracic Society (BTS) guidelines. A subgroup of 49 patients treated with as required β₂ agonists only who met BTS criteria for a step up in treatment were studied before and 2 months after treatment with inhaled budesonide 400 µg twice daily.

Results: There was considerable heterogeneity in induced sputum cell counts, particularly in non-atopic patients. A subgroup of 60 patients had a distinctive sputum cell profile with a neutrophil count higher than our normal range (>65.3%) and a normal sputum eosinophil count (<1.9%). These patients were older, predominantly female, and were more likely to be non-atopic but otherwise had similar clinical and physiological features to the group as a whole. Among the 49 subjects studied before and after inhaled budesonide, 11 patients had an isolated sputum neutrophilia. Following treatment, these patients showed significantly less improvement in visual analogue symptom scores (5.5 v 19.4 mm; mean difference 13.9; 95% CI 0.7 to 27.0), forced expiratory volume in 1 second (FEV₁) (–0.08 v 0.13 l; mean difference 0.21; 95% CI 0.03 to 0.39), and concentration of methacholine provoking a fall in FEV₁ of 20% or more (PC₂₀) (0.15 v 1.29 doubling doses; mean difference 1.11; 95% CI 0.13 to 2.15) than the remaining 38 patients.

Conclusions: These results suggest the presence of a distinct subgroup of patients with mild to moderate asthma who have predominantly neutrophilic airway inflammation and who respond less well to treatment with inhaled corticosteroids.
Table 1 Patient details and sputum cell counts in normal controls, atopic and non-atopic subjects

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Atopic</th>
<th>Non-atopic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>34</td>
<td>114</td>
<td>61</td>
</tr>
<tr>
<td>Male (%)</td>
<td>47</td>
<td>63.8**</td>
<td>62.3**</td>
</tr>
<tr>
<td>Age</td>
<td>34 [16]</td>
<td>39 [21]**</td>
<td>40 [21]**</td>
</tr>
<tr>
<td>Age at onset</td>
<td>16 [31]**</td>
<td>27 [38]**</td>
<td>11 [19]**</td>
</tr>
<tr>
<td>FEV1 (L)</td>
<td>89.8 (6.4)</td>
<td>86.5 (1.4)</td>
<td>91.0 (1.6)</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>85.3 (7.9)</td>
<td>75.0 (1.0)</td>
<td>76.2 (1.0)</td>
</tr>
<tr>
<td>Methacholine PC20 (mg/ml)†</td>
<td>>16</td>
<td>0.68 (0.07)**</td>
<td>0.89 (0.11)*</td>
</tr>
<tr>
<td>PEF amplitude % mean</td>
<td>8.5 (0.9)</td>
<td>26.0 (2.0)</td>
<td>22.2 (2.1)</td>
</tr>
<tr>
<td>Blood eosinophils (%)</td>
<td>2.2 (0.4)</td>
<td>4.6 (0.4)</td>
<td>4.1 (0.4)</td>
</tr>
<tr>
<td>Sputum TCC (x 10^6/ml)</td>
<td>2.8 (0.5)</td>
<td>2.3 (0.5)</td>
<td>2.3 (0.4)</td>
</tr>
<tr>
<td>Squamous cells (%)</td>
<td>5.1 (14.4)</td>
<td>4.4 (15.3)</td>
<td>3.8 (14.8)</td>
</tr>
<tr>
<td>Viability (%)</td>
<td>60.8 (2.8)</td>
<td>61.7 (2.0)</td>
<td>63.5 (2.7)</td>
</tr>
<tr>
<td>Neutrophils (%)‡</td>
<td>30.8 (3.3)</td>
<td>45.0 (2.5)**</td>
<td>44.2 (3.3)**</td>
</tr>
<tr>
<td>Macrophages (%)</td>
<td>61.0 (3.0)</td>
<td>43.5 (2.4)**</td>
<td>44.2 (3.0)**</td>
</tr>
<tr>
<td>Lymphocytes (%)</td>
<td>1.4 (0.4)</td>
<td>1.0 (0.1)</td>
<td>1.0 (0.1)</td>
</tr>
<tr>
<td>Epithelial cells (%)</td>
<td>3.8 (0.9)</td>
<td>3.2 (0.5)</td>
<td>3.2 (0.8)</td>
</tr>
</tbody>
</table>

FEV1 = forced expiratory volume in 1 second; PEF = forced vital capacity; PC20 = concentration of methacholine provoking a fall in FEV1 of 20% or more; TCC = total cell count.

Values are mean [SE] except for †geometric mean (log SE) and *median (IQR).

*p<0.05 atopic vs non-atopic subjects; **p<0.01 atopic vs non-atopic subjects.

Study design and protocol

Patients and controls attended on two occasions. On the first occasion allergen sensitivity was measured by radioallergosorbent tests for specific IgE or skin prick testing to *Dermatophagoides pteronyssinus*, cat fur, grass pollen, and *Aspergillus fumigatus* and atopy was defined as one or more positive skin tests (weal > 2 mm larger than negative control) or raised specific IgE (> 0.34 kU/l) to one or more antigen. Spirometric tests before and after inhaled salbutamol and chest radiography were performed. Subjects recorded PEF twice daily as the best of three blows over a 14 day period.

On the second visit methacholine airway responsiveness was measured using the tidal breathing method followed, after recovery, by sputum induction and processing as previously described. The duration of inhalation of hypertonic saline was standard. A subgroup of patients taking as required β2 agonists only who met the BTS criteria for a step up in treatment (using rescue β2 agonists more than once per day, having nocturnal waking or limitations in activities, peak flow variability >20%, or PEF <80% of predicted or best) were given inhaled budesonide 400 μg twice daily for 2 months. These patients identified their predominant symptom (breathlessness, wheeze, or cough) and the severity of this was assessed using a 100 mm visual analogue scales (VAS) from no symptom (0 mm) to the worst ever symptom (100 mm).

Results

The correlation between sputum eosinophils and methacholine PC20, PEF amplitude % mean (A%M), and FEV1 were assessed using the Spearman rank test. Differences in methacholine PC20 were expressed as doubling doses. The χ2 test was used to compare the percentage of patients using inhaled steroids and the percentage of atopic patients between groups.

RESULTS

All subjects

Normal ranges derived from normal subjects were <65.3% for sputum neutrophil counts and <1.9% for sputum eosinophil counts. 143 patients had intermittent asthma treated with both required β2 agonists only (step 1 of the BTS guidelines); 116 had more persistent symptoms requiring regular inhaled corticosteroids (steps 2 and 3) (table 1). Twenty patients (11% non atopic, nine atopic) were current smokers and 78 (42 steroid naive, 26 atopic) were ex-smokers, but all had a history of <10 pack years. Patient details categorised according to atopic status and use of inhaled corticosteroids are shown in table 1. The mean (SE) daily dose of inhaled steroid (in beclomethasone equivalent doses) for atopic and non-atopic subjects was 424 (56) μg and 416 (50) μg, respectively. Non-atopic asthma was associated with less methacholine airway responsiveness (methacholine PC20 1.34 mg/ml v 0.68 mg/ml; geometric mean difference 1.0 doubling doses; 95% CI of difference 0.4 to 1.6; p=0.002) and higher mean neutrophil count (54.1% v 45.0%; mean difference 9.1%; 95% CI of difference 2.3 to 15.8; p=0.008).

Sputum evidence of eosinophilic airway inflammation was the most common abnormality in the group as a whole with 135 patients (52%) having an induced sputum eosinophil count outside our normal range (fig 1). The median sputum eosinophil count was significantly lower in atopic subjects receiving inhaled corticosteroids (1.1%) than in similarly treated non-atopic subjects. (3.3%, p<0.05; table 1). Among the whole study population there was no correlation between the sputum eosinophil count and the methacholine PC20 (r=−0.03; p>0.05), the maximum PEF amplitude % mean (r=−0.02, p>0.05), or the % predicted FEV1 (r=−0.03, p>0.05). Among the 114 atopic patients a weakly negative

www.thoraxjnl.com
correlation was observed between the sputum eosinophil count and the methacholine PC_{20} (r = -0.30, p < 0.01), while the 145 non-atopic patients demonstrated a weakly positive correlation between these two measurements (r = 0.22, p < 0.05).

Subgroup with isolated neutrophilic inflammation

There was considerable heterogeneity in induced sputum eosinophil and neutrophil cell counts, even among those patients treated with as required β₂ agonists alone. A subgroup of 60 patients, including 35 who were steroid naive, had a distinctive sputum cell profile with a sputum neutrophil count outside the normal range and a normal sputum eosinophil count. Five of these were current smokers and 20 were ex-smokers. These patients were older, tended to develop asthma later, and were more likely to be female and non-atopic than the group as a whole. Clinical and physiological features were otherwise similar (table 2).

Patients studied before and after treatment with inhaled corticosteroids

Ninety two of the patients treated with as required β₂ agonists only met the BTS criteria for a step up in treatment. Forty nine such patients were randomly selected and agreed to attend again 2 months after treatment with inhaled budesonide 400 µg twice daily. Of these subjects, 11 were included in the subgroup described above, having an isolated sputum neutrophilia with a normal sputum eosinophil count (table 3). Compared with the other 38 patients studied before and after treatment, these subjects had significantly less improvement in VAS scores (–5.5 v –19.4 mm; mean difference 13.9; 95% CI 0.7 to 27.0; p=0.04), FEV₁ (–0.08 v 0.13 l; mean difference 0.21; 95% CI 0.03 to 0.39; p=0.026), and PC_{20} (0.15 v 1.29 doubling doses; mean difference 1.11; 95% CI 0.13 to 2.15; p=0.029; fig 1).

DISCUSSION

We have analysed the extent and nature of airway inflammation in induced sputum in normal controls and in a large population of well characterised patients with asthma. Our estimates of normal ranges, although derived from small numbers, are very similar to findings in larger populations. In the adults with asthma receiving treatment at BTS stages 1–3 and with relatively normal spirometric parameters, we found considerable heterogeneity in induced sputum inflammatory cell counts. Importantly, a number of predominantly female, non-atopic patients with adult onset asthma had a distinctive sputum inflammatory cell profile consisting of sputum neutrophilia and a normal sputum eosinophil count. Furthermore, a subgroup of steroid naïve subjects with this isolated neutrophilic inflammation had an impaired response to treatment with inhaled corticosteroids.

Previous studies have noted sputum evidence of isolated neutrophilic airway inflammation in some patients with severe asthma and in a minority of adults studied during asthma exacerbations. Gibson et al used induced sputum to assess 56 patients with persistent asthma taking high doses of inhaled corticosteroids and found that 59% of patients had suppressed sputum eosinophil counts but evidence of neutrophilic inflammation. Wenzel et al used bronchoscopic techniques to characterise the underlying airway immunopathology of a group of patients with severe refractory asthma who had severely impaired lung function and were treated with high dose inhaled steroids and oral prednisolone and have suggested the presence of a subgroup who have a predominant neutrophilic airway inflammation, absence of eosinophils, and normal basement membrane thickness. It is not clear whether the findings are peculiar to severe asthma or reflect the effects of treatment with high doses of corticosteroids. Our results provide support for the presence of such a distinct asthma phenotype and, for the first time, show that it is a relatively common finding in patients with milder asthma and, in some subjects at least, that it is not an artefact due to corticosteroid treatment. The incidence of neutrophilic inflammation was higher in the population studied by Gibson et al and in the patients with severe asthma studied by Wenzel et al, and it remains possible that this phenotype is particularly associated with more severe disease. We have further extended these earlier findings by showing a significantly impaired response to inhaled corticosteroids in a subgroup of...
the subjects with an isolated neutrophilia. The poor response to inhaled corticosteroid is not only of obvious clinical significance but it also provides a possible mechanism by which subjects might be particularly likely to evolve into more severe refractory cases.

We do not have a clear explanation for the development of neutrophilic asthma phenotype and to determine whether it is consistent with asthma, had normal chest radiographs and no symptoms provoking a fall in FEV1 of 20% or more; PEF=peak expiratory flow.

Table 3 Baseline characteristics of patients studied before and after treatment with budesonide 400 µg twice daily for 2 months

<table>
<thead>
<tr>
<th></th>
<th>Neutrophilic§</th>
<th>Others¶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (%)</td>
<td>27.3 (9)</td>
<td>55.3 (2)</td>
</tr>
<tr>
<td>Age†</td>
<td>57 (2)</td>
<td>45 (22)*</td>
</tr>
<tr>
<td>Age at onset†</td>
<td>56 (13)</td>
<td>40 (29)*</td>
</tr>
<tr>
<td>VAS (mm)</td>
<td>59 (9)</td>
<td>48 (5)</td>
</tr>
<tr>
<td>FEV1 (% pred)</td>
<td>82 (5.7)</td>
<td>89 (2.4)</td>
</tr>
<tr>
<td>FEV1/FVC ratio (%)</td>
<td>72 (3.2)</td>
<td>74 (0.6)</td>
</tr>
<tr>
<td>% atopic</td>
<td>9.1 (6)</td>
<td>42 (1)*</td>
</tr>
<tr>
<td>No of current (ex) smokers</td>
<td>2 (5)</td>
<td>3 (10)</td>
</tr>
<tr>
<td>PEF (A%M)</td>
<td>22.8 (4)</td>
<td>17.0 (1.5)</td>
</tr>
<tr>
<td>Methacholine PC20 (mg/ml)‡</td>
<td>1.0 (0.2)</td>
<td>1.3 (0.11)</td>
</tr>
<tr>
<td>Sputum eosinophil count (%)†</td>
<td>0.2 (0.9)</td>
<td>6.0 (7.2)*</td>
</tr>
<tr>
<td>Sputum neutrophil count (%)§</td>
<td>78.5 (2.6)</td>
<td>49.5 (4.1)*</td>
</tr>
</tbody>
</table>

Values are mean (SE) except for †median (IQR) and §geometric mean (log SE).

*p<0.05; **p<0.01.

Patients with sputum neutrophils >65.3% and eosinophils <1.9%.

Patients with sputum eosinophils >1.9% or neutrophils <65.3%.

Table 2 Characteristics of patients with isolated sputum neutrophilia and all other patients studied

<table>
<thead>
<tr>
<th></th>
<th>β agonist only (n=35)</th>
<th>Inhaled steroids (n=25)</th>
<th>Other§ (n=194)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (%)</td>
<td>34 (28)</td>
<td>50*</td>
<td></td>
</tr>
<tr>
<td>Age†</td>
<td>54 (24)</td>
<td>48 (13)</td>
<td>45 (25)*</td>
</tr>
<tr>
<td>Age at onset†</td>
<td>41 (30)</td>
<td>42 (28)</td>
<td>34 (40)*</td>
</tr>
<tr>
<td>FEV1 (% pred)</td>
<td>88 (2.8)</td>
<td>86 (3.2)</td>
<td>86 (1.1)</td>
</tr>
<tr>
<td>FEV1/FVC ratio (%)</td>
<td>75 (1.5)</td>
<td>74 (2.4)</td>
<td>74 (0.6)</td>
</tr>
<tr>
<td>% atopic</td>
<td>22.9</td>
<td>32</td>
<td>48.4*</td>
</tr>
<tr>
<td>% taking inhaled steroids</td>
<td>0</td>
<td>100</td>
<td>46.4</td>
</tr>
<tr>
<td>PEF (A%M)</td>
<td>20.9 (3.2)</td>
<td>25.2 (2.8)</td>
<td>24.3 (1.5)</td>
</tr>
<tr>
<td>PEF (A%M)</td>
<td>1.4 (0.09)</td>
<td>1.0 (0.10)</td>
<td>1.0 (0.06)</td>
</tr>
<tr>
<td>Sputum eosinophil count (%)†</td>
<td>0.4 (0.9)</td>
<td>0.7 (0.9)</td>
<td>5.0 (13.1)**</td>
</tr>
<tr>
<td>Sputum neutrophil count (%)§</td>
<td>81.0 (1.6)</td>
<td>85.3 (2.0)</td>
<td>39.5 (1.4)**</td>
</tr>
</tbody>
</table>

FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; PC20=concentration of methacholine provoking a fall in FEV1 of 20% or more; PEF=peak expiratory flow.

Values are mean (SE) except for †median (IQR) and §geometric mean (log SE).

*p<0.05. **p<0.01.

§Patients with sputum neutrophils >65.3% and eosinophils <1.9%.

¶Patients with sputum eosinophils >1.9% or neutrophils <65.3%.

Further work is required to determine whether they are clinically significant. The sputum eosinophil count was significantly lower in atopic subjects treated with inhaled corticosteroids than in non-atopic subjects. This might possibly is that atopic patients might not respond as well to a higher dose of inhaled corticosteroids.

There was no correlation between airway hyperresponsiveness and eosinophilic airway inflammation in the population as a whole, although there was a weak negative correlation when atopic subjects were considered alone. Further work is required to determine whether there is a simple causal association between eosinophilic airway inflammation and disordered airway function and suggest a more complex relationship. Other studies examining the relationship between the sputum eosinophil count and airway responsiveness have produced mixed results, 18–20 although it is notable that those studies showing a significant correlation have been largely confined to atopic subjects. 18–20

We describe a single observation, and in a disease characterised by variability we cannot be sure that the distinctive phenotype seen in our population of adults with asthma is stable. Our estimates of incidence might also be incorrect since we have studied subjects referred for secondary care who might be particularly likely to display unusual features. Longer term studies of a more typical population of asthmatic subjects are required to estimate the true prevalence of this asthma phenotype and to determine whether it is stable. Placebo controlled longer term intervention studies

www.thoraxjnl.com

Downloaded from http://thorax.bmj.com/ on June 20, 2017 - Published by group.bmj.com
with inhaled corticosteroids and other treatments are also required to assess the efficacy of these interventions fully. Our findings raise the possibility of a distinct phenotype of asthma, with active neutrophilic and suppressed eosinophilic airway inflammation, across the range of severity of asthma that differs in response to treatment and could have important implications for our understanding and treatment of the disease.

ACKNOWLEDGEMENTS
We thank William Monteiro and Richard Ward for help with sputum processing and members of the department of respiratory physiology for performing the sputum inductions. This work was supported by grants from Astra Zeneca, Trent Region and Glenfield Hospital Research fund. Ruth Green is supported by a National Asthma Campaign grant.

Authors’ affiliations
R H Green, C E Brightling, G Woltmann, D Parker, A J Wardlaw, I D Pavord, Institute for Lung Health, Department of Respiratory Medicine and Thoracic Surgery, Glenfield Hospital, Groby Road, Leicester LE3 9PQ, UK
This work was supported by grants from Astra Zeneca, Trent Region and Glenfield Hospital Research fund. Ruth Green is supported by a National Asthma Campaign grant.

REFERENCES
2 Aas K. Heterogeneity of bronchial asthma. Sub-populations or different stages of the disease. Allergy 1981;36:3–14.
4 Humbert M, Durham SR, Ying S, et al. IL-4 and IL-5 mRNA and protein in bronchial biopsies from patients with atopic and nonatopic asthma: evidence against “intrinsic” asthma being a distinct immunopathologic entity. Am J Respir Crit Care Med 1996;154:1497–504.
Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids

R H Green, C E Brightling, G Woltmann, D Parker, A J Wardlaw and I D Pavord

Thorax 2002 57: 875-879
doi: 10.1136/thorax.57.10.875

Updated information and services can be found at:
http://thorax.bmj.com/content/57/10/875

These include:

References
This article cites 27 articles, 3 of which you can access for free at:
http://thorax.bmj.com/content/57/10/875#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Asthma (1782)
Inflammation (1020)
Drugs: respiratory system (526)
Airway biology (1100)
Cardiothoracic surgery (676)
Lung function (773)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/