
Aspirin and other anti-inflammatory drugs

Sir John Vane

Historical introduction
Salicylic acid, the active substance in plants
used for thousands of years as medicaments,
was synthesised by Kolbe in Germany in 1874.
MacLagan1 and Stricker2 showed that it was
eVective in rheumatic fever. A few years later
sodium salicylate was also in use as a treatment
for chronic rheumatoid arthritis and gout as
well as an antiseptic compound.

Felix HoVman was a young chemist working
at Bayer. Legend has it that his father, who was
taking salicylic acid to treat his arthritis,
complained to his son about its bitter taste.
Felix responded by adding an acetyl group to
salicylic acid to make acetylsalicylic acid.
Heinrich Dreser, the Company’s head of phar-
macology, showed it to be analgesic, anti-
pyretic, and anti-inflammatory.3 Bayer intro-
duced the new drug as “aspirin” in 1899 and
sales have increased ever since.

In the latter part of the 20th century several
other non-steroidal anti-inflammatory drugs
(NSAIDs) were discovered, including antipy-
rine, phenacetin, phenylbutazone and, more
recently, the fenamates, indomethacin and
naproxen. Despite the diversity of their chemi-
cal structures, these drugs all share the same
therapeutic properties. They alleviate the
swelling, redness and pain of inflammation,
reduce a general fever, and cure a headache.
They also share, but not equally, a number of
side eVects including damage to the gastric
mucosa, delay in the birth process, and damage
to the kidney. A particularly interesting “side
eVect”, now used prophylactically, is the
anti-thrombotic eVect. Many clinical trials
have shown that aspirin given once a day in
doses as low as 75 mg will help to prevent heart
attacks or strokes.

When a chemically diverse group of drugs
shares not only the same therapeutic qualities
(which in themselves have not much connec-
tion with each other), but also the same side
eVects, it is a fairly safe bet that their actions are
based on a single biochemical intervention. For
many years pharmacologists and biochemists
searched for such a common mode of action
without finding one that was satisfactory.

It was against this background that, using a
crude preparation of prostaglandin synthase
(now known as cyclo-oxygenase or COX),
Vane4 found a dose dependent inhibition of
prostaglandin formation by aspirin, salicylate,
and indomethacin but not by morphine. Two
other reports from the same laboratory lent
support to his findings. Smith and Willis5

showed that aspirin prevented the release of
prostaglandins from aggregating human plate-
lets and Ferreira et al6 demonstrated that
aspirin-like drugs blocked prostaglandin re-
lease from the perfused, isolated spleen of the
dog. Vane4 proposed that all NSAIDs act by

inhibiting COX, thereby reducing prosta-
glandin formation, providing a unifying expla-
nation for their therapeutic actions and their
side eVects. This also firmly established certain
prostaglandins as important mediators of
inflammatory disease (see reviews by Vane and
Botting7 and Vane et al8). COX first cyclises
arachidonic acid to form prostaglandin (PG)
G2 and the peroxidase part of the enzyme then
reduces PGG2 to PGH2.

Discovery of COX-2
Over the next 20 years several groups postu-
lated the existence of isoforms of COX. Then
Rosen et al,9 studying COX in epithelial cells
from the trachea, found an increase in activity
of COX during prolonged cell culture. This
increase in activity was not accounted for by an
increase in the known mRNA of 2.8 kb. They
found a second mRNA of 4.0 kb and suggested
that this was derived from a distinct COX-
related gene which encoded for a protein with
COX activity. Needleman and his group10–12

reported that bacterial lipopolysaccharide
(LPS) increased the synthesis of prostaglandins
in human monocytes in vitro and in mouse
peritoneal macrophages in vivo. This increase,
but not the basal level of enzyme, was inhibited
by dexamethasone and associated with de novo
synthesis of new COX protein. This gave rise to
the concept of “constitutive” and “inducible”
forms of COX.

The breakthrough came from molecular
biologists outside the field of prostaglandins.
Simmons et al,13 studying neoplastic transfor-
mation, discovered a second form of COX
induced by v-src, serum, or phorbol esters in
chicken embryo cells.13 14 It was encoded by a
4.1 kb mRNA similar in size to that reported
by Rosen et al.9 They cloned the gene, deduced
the protein structure, and found it homologous
to COX but to no other known protein.
Herschman and colleagues15 independently
found a similar gene in the mouse, as did Sim-
mons et al,16 O’Banion et al,17 and Sirois and
Richards.18

COX-1 and COX-2 have molecular weights
of 71 kd and a 60% homology. Glucocorticoids
inhibit the expression of COX-2 and this is an
additional aspect of their anti-inflammatory
action. The levels of COX-2, normally very low
in cells, are tightly controlled by a number of
factors including cytokines, intracellular mes-
sengers, and by the availability of substrate.

COX-1

COX-1 has three folding units: an epidermal
growth factor-like domain, a membrane bind-
ing section, and an enzymatic domain. The
sites for peroxidase and cyclo-oxygenase activ-
ity are adjacent but spatially distinct. The
enzyme integrates into only a single leaflet of
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the membrane lipid bilayer and thus the
position of the COX channel allows arachi-
donic acid to gain access to the active site from
the interior of the bilayer.19

NSAIDs compete with arachidonic acid for
binding to the active site, thereby excluding
access for the substrate.20 Uniquely, aspirin
irreversibly inhibits COX-1 by acetylation of
serine 530. COX-1 has clear physiological
functions. Its activation leads, for instance, to
the production of prostacyclin which, when
released by the endothelium is
anti-thrombogenic,21 and when released by the
gastric mucosa is cytoprotective.22

COX-2

The structure of COX-223 closely resembles
that of COX-1 but, fortunately for the medici-
nal chemist, the binding site for arachidonic
acid (the COX channel) is slightly diVerent.
The active site of COX-2 is a little larger and
can accommodate bigger structures than that
of COX-1. A secondary internal pocket
contributes significantly to the larger volume of
the active site of COX-2, although the central
channel is also 17% bigger.

Since COX-2 is induced by inflammatory
stimuli and by cytokines in migratory and other
cells, it is attractive to suggest that the
anti-inflammatory actions of NSAIDs result
from the inhibition of COX-2, whereas the
unwanted side eVects such as damage to the
stomach lining are caused by inhibition of the
constitutive enzyme, COX-1. This general
concept is now widely accepted.

Functions of COX-1 and COX-2
LUNGS

Prostacyclin is a potent vasodilator of the pul-
monary circulation in humans and other
species. This endothelium derived prostacyclin
is well placed to function as a local vasodilator
and to prevent the formation of micro-
thrombi.24

Pulmonary blood vessels are constricted by
PGF2á and thromboxane (TX) A2 but, in some
species, they are dilated by PGE2. The
vasoconstrictor responses to PGF2á are potenti-
ated by hypoxia. Mediators of inflammation
such as bradykinin, histamine, and
5-hydroxytryptamine all release prostaglandins
from lung tissue. Histamine releases PGF2á

from human lung fragments by stimulating H1

receptors. The lungs of asthmatic subjects pro-
duce more histamine than normal lungs, which
correlates with the greater number of mast cells
found in asthmatic lungs.25

The airways of most species, including
humans, are constricted by PGF2á, TXA2,
PGD2, and PGI2 whereas PGE2 is weakly
bronchodilator. Asthmatic subjects are 8000
times more sensitive to the bronchoconstrictor
action of inhaled PGF2á than healthy subjects.
COX-2 expression in airways has been re-
viewed by Barnes et al.26 Airway hyperreactiv-
ity, a feature of allergic asthma, is associated
with inflammation of the airways. There is
increased expression of COX-2 mRNA and of
enzyme protein with no change in COX-1 lev-
els in pulmonary epithelial cells, airway smooth

muscle cells, pulmonary endothelial cells, and
alveolar macrophages treated with LPS or
proinflammatory cytokines. In the carrageenin
induced pleurisy model of inflammation, levels
of COX-2 protein increased maximally at two
hours in the cell pellets of pleural exudate.27

However, lung tissue can also express COX-2
constitutively. COX-2 mRNA is weakly ex-
pressed in unstimulated rat isolated perfused
lungs and is upregulated by nitric oxide (NO)
donors.28 Human lungs obtained from accident
victims29 and human cultured pulmonary
epithelial cells expressed more constitutive
COX-2 than constitutive COX-1.30 31 Interest-
ingly, hypoxia induces COX-2 gene expression
in isolated perfused lungs of the rat without
aVecting the mRNA for COX-1.28 This induc-
tion of the COX-2 gene by hypoxia was inhib-
ited by NO donors, which may represent one of
the mechanisms of the beneficial eVect of
inhaled NO in pulmonary hypertension.

Inflammatory stimuli cause diVerential re-
lease of prostaglandins from various regions of
the lungs. Human cultured pulmonary epithe-
lial cells stimulated with LPS, interleukin (IL)-
1á, tumour necrosis factor (TNF)á, or a
mixture of cytokines synthesise mainly PGE2

together with smaller amounts of PGF2á, PGI2,
and TXA2. This prostaglandin production can
be suppressed by dexamethasone32 which indi-
cates that it is caused by COX-2.

Pollutants such as those in car exhausts can
also induce COX-2 in human cultured airway
epithelial cells, resulting in an increased forma-
tion of PGE2 and PGF2á.

33 PGE2 and TXB2, in
addition to COX-2 protein, could be detected
in the inflammatory exudate produced by
injection of carrageenin into the rat pleural
cavity.34 Thus, it seems likely that COX-2 is
upregulated in the inflamed lungs of asthmatic
patients resulting in increased production of
bronchoconstrictor prostaglandins which exert
an exaggerated eVect on the bronchiolar
smooth muscle that has become hyperreactive
to constrictor agents.

ENDOTHELIUM

Endothelial cells generate prostacyclin which is
anti-aggregatory and a vasodilator. They
clearly contain COX-1 but McAdam et al35 and
Catella-Lawson et al,36 using the selective
COX-2 inhibitors celecoxib or rofecoxib in
volunteers, found that the urinary excretion of
the prostacyclin metabolite was substantially
suppressed by anti-inflammatory doses of
either drug. Thus, in the endothelium prosta-
cyclin is mainly produced by COX-2, probably
induced by laminar shear stress.37

GASTROINTESTINAL TRACT

The “cytoprotective” action of prostaglandins
in preventing gastric erosions and ulceration is
mainly brought about by endogenously pro-
duced prostacyclin and PGE2 which reduce
gastric acid secretion, exert a direct vasodilator
action on the vessels of the gastric mucosa, and
stimulate the secretion of viscous mucus and
duodenal bicarbonate.38 In most species, in-
cluding humans, the protective prostaglandins
are synthesised by COX-1, although COX-2
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has been reported in the normal rat stomach,39

in human gastric mucosa infected with Helico-
bacter pylori,40 and in ulcerative colitis.41 COX-2
is also expressed around the periphery of
gastric ulcers in mice and rats. It may be
involved in wound healing.42–44 Large quantities
of COX-2 are expressed in experimentally
induced and in human colon cancers.45 46

KIDNEY

Maintenance of kidney function both in animal
models of disease states and in patients with
congestive heart failure, liver cirrhosis, or renal
insuYciency is dependent on vasodilator pros-
taglandins. These patients are therefore at risk
of renal ischaemia when prostaglandin synthe-
sis is reduced by NSAIDs. Synthesis of PGE2

and prostacyclin is mainly by COX-1, although
there are discrete cells in the macula densa that
contain constitutive COX-2.47 48 Prostacyclin
made by COX-2 may drive the renin-
angiotensin system48; Schneider and Stahl49

have reviewed this rapidly evolving field.
Mice that lack the gene for production of

COX-1 appear to be healthy and do not show
significant signs of kidney disease. This is in
accord with the finding that inhibition of
COX-1 by NSAIDs does not materially alter
renal function under normal physiological
conditions, although a small percentage of
those taking NSAIDs have mild fluid retention.
However, Morham et al reported that the
kidneys failed to develop fully after birth in
COX-2(–/–) null mice, with the result that the
animals died before they were eight weeks old.50

More recently, after some backcrossing of the
same COX-2(–/–) deficient mice in a diVerent
laboratory, a breed of COX-2(–/–) mice has been
achieved which has little or no kidney malfunc-
tion and which live for three years.51

Fitzgerald’s group36 compared the renal
eVects of the non-selective COX inhibitor
indomethacin with those of the COX-2 inhibi-
tor rofecoxib and with placebo in healthy older
adults over two weeks. Both active regimes
were associated with a transient but significant
decline in urinary sodium excretion during the
first 72 hours. The glomerular filtration rate
(GFR) was decreased by indomethacin but not
changed significantly by rofecoxib. Thus, acute
sodium retention by NSAIDs in healthy adults
is mediated by inhibition of COX-2, whereas
depression of GFR is caused by inhibition of
COX-1.

CENTRAL NERVOUS SYSTEM

COX-1 is found in neurones throughout the
brain but it is most abundant in the forebrain
where prostaglandins may be involved in com-
plex integrative functions such as control of the
autonomic nervous system and in sensory
processing. COX-2 mRNA is induced in brain
tissue and in cultured glial cells by pyrogenic
substances such as LPS, IL-1, or TNF.52 How-
ever, low levels of COX-2 protein and COX-2
mRNA have been detected in neurones of the
forebrain without previous stimulation by
proinflammatory stimuli. These “basal” levels
of COX-2 are particularly high in neonates and
are probably induced by physiological nervous

activity. Intense nerve stimulation, leading to
seizures, induces COX-2 mRNA in discrete
neurones of the hippocampus,53 whereas acute
stress raises levels in the cerebral cortex.
COX-2 mRNA is also constitutively expressed
in the spinal cord of normal rats and may be
involved with processing of nociceptive
stimuli.54

Endogenous fever producing PGE2 is
thought to originate from COX-2 induced by
LPS or IL-1 in endothelial cells lining the
blood vessels of the hypothalamus.52 Li et al55

tested the eVects of LPS in producing a fever in
knockout mice. Wild type mice and COX-1(+/–)

and COX-1(–/–) mice all responded to LPS with
a 1°C rise in core temperature within one hour:
the fever gradually abated over the next four
hours. By contrast, COX-2(+/–) and COX-2(–/–)

mice displayed no temperature rise after LPS.
Thus, COX-2 is necessary for LPS induced
fever production. A corollary of this finding is
that there is unlikely to be a COX-3 through
which paracetamol brings down a fever. The
selective COX-2 inhibitor rofecoxib is a potent
antipyretic agent in man.56

REPRODUCTIVE SYSTEM

Expression of COX-1 is much greater than that
of COX-2 in the fetal heart, kidneys, lungs, and
brain, as well as in the decidual lining of the
uterus.57 58 Prostaglandins synthesised by
COX-1 are apparently essential for the survival
of fetuses during parturition, since the majority
of oVspring born to homozygous COX-1
knockout mice do not survive.59 This high
mortality may result from the premature
closure of the ductus arteriosus. Female
COX-2 knockout mice are mostly infertile,
producing very few oVspring because of a
reduction in ovulation.60 COX-2 induction is
involved in ovulation and is clearly the trigger
for parturition,61 62 leading to PGF2á release to
cause contractions of the uterine smooth
muscle.

Selective inhibition of COX-2
An estimated 34–46% of patients on chronic
NSAID treatment will have some form of
gastrointestinal adverse event. In the USA
some 100 000 patients on NSAIDs are admit-
ted to hospital each year because of perfora-
tions, ulcers, or bleeding in the stomach
(PUBs).63 Some 15% of these patients die in
intensive care. Of course, these hospital admis-
sions only represent the extreme of gastric irri-
tation, which ranges from mild dyspepsia all
the way through to PUBs. Even ibuprofen, rec-
ognised as one of the mildest gastric irritants,
causes problems in a significant proportion of
patients. Clearly, there is a dramatic need for
anti-inflammatory drugs that do not aVect the
stomach.

COX-2/COX-1 RATIOS

The importance of the discovery of inducible
COX-2 is highlighted by the diVerences in
pharmacology of the two enzymes.64 Aspirin,
indomethacin, and ibuprofen are much less
active against COX-2 than against COX-1.65
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Indeed, the strongest inhibitors of COX-1 such
as aspirin, indomethacin, and piroxicam are the
NSAIDs that cause the most damage to the
stomach.

There are now many methods for measuring
COX-2/COX-1 ratios, varying from human
enzyme assays in vitro66 to assays in human
blood samples.67–69 In general, the whole blood
assays are reproducible from laboratory to
laboratory and provide conditions that ap-
proach the physiological. For instance, any
plasma protein binding of the drug will
automatically be taken into account.

Implicit in the theory that COX-2 causes
inflammation is that NSAIDs are used in
inflammation because they inhibit COX-2.
The range of activities of NSAIDs against
COX-1 compared with COX-2 explains the
variations in the side eVects of NSAIDs at their
anti-inflammatory doses. Garcia Rodriguez
and Jick70 have published a comparison of epi-
demiological data on the side eVects of
NSAIDs. Piroxicam and indomethacin in anti-
inflammatory doses showed high gastro-

intestinal toxicity. These drugs have a much
higher potency against COX-1 than against
COX-2.7 Thus, when epidemiological results
are compared with COX-2/COX-1 ratios,
there is a parallel relationship between gastro-
intestinal side eVects and COX-2/COX-1
ratios.

The conclusion that inhibition of COX-1
accounts for the gastric toxicity of NSAIDs is
strongly reinforced by the work of Warner et al69

in whole blood assays. They measured the
eVects of some 30 non-selective, selective, and
highly selective COX-2 inhibitors in two types
of whole blood assay for COX-1 and COX-2
(fig 1). There is substantial evidence that
NSAIDs and COX-2 inhibitors have their
maximum anti-inflammatory eVect when
COX-2 is inhibited by about 80%. Figure 2
shows the eVects of these drugs on COX-1 at
the 80% inhibitory concentration for COX-2.
The NSAIDs that damage the stomach
strongly inhibit COX-1.

Selective inhibition of COX-2
Meloxicam, nimesulide, and etodolac were
identified in the 1980s as potent anti-
inflammatory drugs with low ulcerogenic
activity in the rat stomach. In some instances
this was also shown to parallel low activity
against prostaglandin synthesis in the rat stom-
ach. After the discovery of COX-2 these three
drugs were each found to be selective COX-2
inhibitors.

Meloxicam is about 10 times more potent on
COX-2 than on COX-1 in the human whole
blood assay. It is marketed around the world for
use in rheumatoid arthritis and osteoarthritis.
In double blind trials in many thousands of
patients with osteoarthritis meloxicam pro-
duced significantly fewer gastrointestinal ad-
verse eVects than the standard NSAIDs.71 72

Perforations, ulcerations, and bleedings oc-
curred in fewer meloxicam treated patients
than in those treated with piroxicam, di-
clofenac, or naproxen. The frequency of
adverse events with meloxicam was signifi-
cantly less than with piroxicam and naproxen
(p<0.05).73 74

Etodolac is marketed for the treatment of
osteoarthritis and rheumatoid arthritis. It is
about 15 times more potent on COX-2 than on
COX-1 in human whole blood. In healthy
human volunteers etodolac twice daily did not
suppress gastric mucosal prostaglandin pro-
duction and caused less gastric damage than
naproxen.75 Patients with osteoarthritis or
rheumatoid arthritis obtained relief from
symptoms with etodolac equal to other com-
monly used NSAIDs, but with a lower
incidence of serious gastrointestinal toxicity.76

Nimesulide is about 10 times more active on
COX-2 than on COX-1 in the human whole
blood assay. In limited clinical trials in acute
and chronic inflammation it was more eVective
than placebo or had comparable anti-
inflammatory activity to established NSAIDs.
Interestingly, nimesulide seems safe to use in
aspirin sensitive asthmatic patients. Several
recent studies in NSAID intolerant asthmatic
patients have shown that therapeutic doses of

Figure 1 Activity in modified whole blood assay of various NSAIDs on COX-1 at a dose
that gives an 80% inhibition of COX-2. Those below the line have selectivity towards
COX-1 and these are grouped with others that have a less than fivefold selectivity towards
COX-2. The next group contains meloxicam, etodolac, celecoxib, and nimesulide which
have 5–50 fold selectivity towards COX-2. Only rofecoxib has a greater than 50-fold
selectivity for COX-2. Modified from Warner et al.69
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nimesulide did not induce asthmatic attacks
while high doses of 400 mg only precipitated
mild asthma in 10% of patients.77 Perhaps
aspirin induced asthma is associated with
COX-1 inhibition?

Inhibitors designed to act on COX-2
Needleman and his group at Monsanto/Searle
have made inhibitors that are some 1000 times
more potent against COX-2 than against
COX-1 in enzyme assays.78 One of these,
SC-58635 (celecoxib), is an eVective analgesic
for moderate to severe pain following tooth
extraction.79 Celecoxib given for seven days to
human volunteers provided no evidence of
gastric damage.80 Interestingly, in our whole
blood assay69 celecoxib is only 10 times more
active against COX-2 than COX-1, which is a
comparable selectivity to meloxicam.

Celecoxib was launched in December 1998
for the treatment of osteoarthritis and rheuma-
toid arthritis. Extensive clinical trial results
have not yet been published. Interestingly,
although doses up to 800 mg of celecoxib do
not aVect platelet aggregation in volunteers,
there was an inhibition of serum thromboxane
B2 production of up to 70%, albeit with a shal-
low dose-response curve.35

Merck is also launching worldwide a COX-2
inhibitor, rofecoxib or Vioxx. In phase I studies
a single dose of 250 mg daily for seven days
(which is 10 times the anti-inflammatory dose)
produced no adverse eVects on the stomach
mucosa, as evidenced by gastroscopy.81 After a
single dose of 1 g there was no evidence of
COX-1 inhibition in platelets, but activity of
COX-2 in LPS stimulated monocytes ex vivo
was reduced. For postoperative dental pain
rofecoxib at 25–500 mg showed equal analge-
sic activity to ibuprofen82 and provided relief
from symptoms in a six week study of
osteoarthritis.83 Rofecoxib is also eVective at
50 mg once daily in the pain of dysmenor-
rhoea.

Other possible therapeutic uses for
selective COX-2 inhibitors
PREMATURE LABOUR

Prostaglandins are the cause of uterine con-
tractions during labour. NSAIDs such as
indomethacin will delay premature labour by
inhibiting the production of prostaglandins,
but will at the same time cause early closure of
the ductus arteriosus and reduce urine produc-
tion by the fetal kidneys.84 The delay in the
birth process is probably the result of inhibition
of COX-2 since mRNA for COX-2 increases
substantially in the amnion and placenta
immediately before and after the start of
labour,58 whereas the side eVects on the fetus
are caused by inhibition of COX-1. One cause
of preterm labour could be an intrauterine
infection resulting in release of endogenous
factors that increase prostaglandin production
by upregulating COX-2.85 Nimesulide reduces
prostaglandin synthesis in isolated fetal mem-
branes and has been used successfully for a
prolonged period to delay premature labour
without manifesting the side eVects of in-
domethacin on the fetus.84

COLON CANCER

Epidemiological studies have established a
strong link between ingestion of aspirin and a
reduced risk of developing colon cancer.86 87

Sulindac also caused reduction of prosta-
glandin synthesis and regression of adenoma-
tous polyps in 11 of 15 patients with familial
adenomatous polyposis (FAP), a condition in
which many colorectal polyps develop sponta-
neously with eventual progression to tumours.
Interestingly, COX-2 and not COX-1 is highly
expressed in human and animal colon cancer
cells as well as in human colorectal adenocarci-
nomas.45 46 In the mutant Apc mouse, which is
a model of FAP in humans, the spontaneous
development of intestinal polyposis was
strongly reduced either by deletion of the
COX-2 gene or by treatment with a selective
COX-2 inhibitor.88–90 Nimesulide also reduced
the number and size of intestinal polyps in Min
mice.91 The development of azoxymethane
induced colon tumours over a year was
inhibited in rats fed celecoxib.92 Thus, it is
highly likely that COX-2 inhibitors could be
used prophylactically to prevent colon cancer
in genetically susceptible individuals without
causing gastrointestinal damage themselves.

ALZHEIMER’S DISEASE

The connection between COX and
Alzheimer’s disease has been based mostly on
epidemiology because of the lack of an animal
model of the disease. A number of studies have
shown a significantly reduced odds ratio for
Alzheimer’s disease in those taking NSAIDs as
anti-inflammatory therapy.93–95 The Baltimore
Longitudinal Study of Ageing96 with 1686 par-
ticipants showed that the risk of developing
Alzheimer’s disease was reduced among users
of NSAIDs, especially those who had taken the
medications for two years or more. No
decreased risk was evident with paracetamol or
aspirin use. However, aspirin was probably
taken in a dose too low to have an anti-
inflammatory eVect. The protective eVect of
NSAIDs is consistent with evidence of inflam-
matory activity in the pathophysiology of
Alzheimer’s disease. There is a strong interest
in COX-2 in Alzheimer’s disease, and Pasinetti
and Aisen97 have shown expression of COX-2
in the frontal cortex of the brain from these
patients.

Conclusions
The identification of selective inhibitors of
COX-2 will clearly provide important advances
in the treatment of inflammation. Conven-
tional NSAIDs lead to gastrointestinal side
eVects which include ulceration of the stom-
ach, sometimes with subsequent perforation
and deaths estimated at several thousand a year
in the USA alone. The evidence is strong, both
from animal tests and from the clinic, that
selective COX-2 inhibitors will have greatly
reduced side eVects.

It is now becoming generally accepted that
the unwanted side eVects of NSAIDs result
from their ability to inhibit COX-1 whilst their
anti-inflammatory (therapeutic) eVects result
from inhibition of COX-2. This concept is now

Aspirin and other anti-inflammatory drugs S7

www.thoraxjnl.com

 on A
pril 4, 2024 by guest. P

rotected by copyright.
http://thorax.bm

j.com
/

T
horax: first published as 10.1136/thorax.55.suppl_2.S

3 on 1 O
ctober 2000. D

ow
nloaded from

 

http://thorax.bmj.com/


set in stone. Thus, selective COX-2 inhibitors
will provide an important advance in anti-
inflammatory treatment. In addition to their
beneficial actions in inflammatory diseases,
these drugs may be useful in the future for the
prevention of colon cancer, Alzheimer’s dis-
ease, or premature labour.

Finally, there are exciting clues to suggest
that aspirin induced asthma may be a COX-1
dependent eVect. If so, the selective COX-2
inhibitors may well avoid this distressing com-
plication of treatment with NSAIDs.
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