Risk factors for death from asthma

Guite and colleagues recently attempted to identify risk factors for certain causes of death among patients admitted to hospital with asthma. The data were originally collected for a different purpose, however, and problems of data quality and completeness limit the conclusions that can be drawn from this analysis.

The current study is based on follow up of 2242 (68%) of the original cohort of 3292 patients. An expert panel identified 22 patients who died from asthma, 21 from COPD, and 21 cardiovascular deaths. Because both papers relied on the same expert panel, these discrepancies raise fundamental questions about the interpretation of this paper.

The fact that drugs are prescribed to patients who differ according to baseline risk poses an extraordinary methodological challenge to any epidemiological study. Guite and colleagues concluded that “ipratropium bromide is associated with increased risk of death from asthma even after adjustment for a range of markers of COPD.” Even after including extra deaths not identified by the expert panel as asthma deaths and controlling for a marker of COPD participation, the numbers of cases have changed significantly with 29 deaths from asthma, 21 from COPD, and 21 cardiovascular deaths. Because both papers relied on the same expert panel, these discrepancies raise fundamental questions about the interpretation of this paper.

The fact that drugs are prescribed to patients who differ according to baseline risk poses an extraordinary methodological challenge to any epidemiological study. Guite and colleagues concluded that “ipratropium bromide is associated with increased risk of death from asthma even after adjustment for a range of markers of COPD.” Even after including extra deaths not identified by the expert panel as asthma deaths and controlling for a marker of COPD participation, the numbers of cases have changed significantly with 29 deaths from asthma, 21 from COPD, and 21 cardiovascular deaths. Because both papers relied on the same expert panel, these discrepancies raise fundamental questions about the interpretation of this paper.

The analysis by cause of death is a sub-analysis and is probably less relevant to the general argument. It was, however, of some interest that the excess mortality among those taking ipratropium was found for all major causes of death. Our own view remains, as stated in the paper, that the most likely source of confounding is with concurrent COPD. We have good reason to believe that this is associated with a particular type of outlook for the patients and is likely to be associated with prescription of ipratropium. The analysis of the data did not, however, support this view (table 4) and the elevated risk seemed to persist on adjusting for different markers of COPD, regardless of the certified “cause of death”. Prescribing decisions need to be taken with an overall view of costs and benefits and we would not feel that the data produced in our paper necessarily warrant a change in prescribing in those cases where there is clear clinical benefit to be obtained from the use of ipratropium. An excess death rate that is estimated to be two to three times that on other regimens does, however, in our opinion need to be taken seriously and further work must be done to assess whether the observed association is real and, if so, how it might be explained.

Nebulised taurodilin and B cepacia bronchiectasis

We have already reported a unique case of bronchiectasis with chronic colonisation by UK epidemic (ET12) Burkholderia cepacia in a previously well woman which developed following an acute infection acquired from her two B cepacia colonised children with cystic fibrosis.1 This has intermediate sensitivity to only co-trimoxazole and cefazidime and, despite several intravenous courses of these antibiotics, the patient has remained chronically colonised for more than four years. We have therefore continued with antibiotics which may have action against this multidrug resistant pathogen. Taurodilin acts by disrupting the cell wall, diminishing bacterial adherence, and neutralising toxins.2 It has good in vitro anti-B cepacia activity (MIC 0.4 mg/ml) but is currently used as an antisecretive peritoneal lavage solution. We gave nebulised taurodilin to our non-cystic fibrosis patient in a randomised, double blind, placebo controlled, crossover fashion (“br-01 trial”) to assess its effect on her chronic B cepacia colonisation (primary outcome measure), spirometric tests, and inflammatory markers (serum and sputum concentrations of interleukins 6 and 8, C


2 Guite HF, Burney PGJ. Accuracy of recording deaths from asthma in the UK: the false negative rate. Thorax 1996;51:924–8.

AUTHORS’ REPLY We understand the concern that representatives of Boehringer Ingelheim have expressed about the interpretation of our paper which finds an association between prescription of ipratropium and death among asthmatic patients. In the paper we were also cautious about the interpretation and stated that “the ratio of information to cases is high and therefore results should be regarded as preliminary and should be tested in a larger study”.

There are, however, a number of issues that deserve additional comment. They state that this study was not originally designed to address cause of death among patients admitted to hospital for asthma. The original study plan was always to conduct such a study. Our first report of the cohort described the identification of the cohort and established the accuracy of classification of cause of death. The focus of this paper on establishing the accuracy of recording of cause of death on the death certificates by an expert panel explains why only 22 deaths were discussed. Seven further patients who were certified as having died from asthma were not reviewed by the expert panel as there was insufficient further information on which to base a different opinion other than that given on the death certificate (table 1). However, the high specificity of the diagnosis on the death certificates that were studied leads us to believe that assigning these seven deaths to death from asthma, as on the certificate, is reasonable. As we are concerned with deaths from any cause, this is not a critical issue.

Lanes and Wilson assume that the cohort consisted of 3292 people, but this refers to all admissions including re-admissions. The cohort consisted of 2382 individuals, as stated in both papers, and follow up information was available for 2242 (94%). They are concerned that the risk estimates might be confounded by severity of the disease. Although this is possible, we believe that their argument is misdirected. Most studies of asthma deaths have looked at death due to asthma as defined on the death certificate and have adjusted for severity using proxy measures. These measures have most often been related to health service use and have included admissions to hospital for asthma, use of oral steroids, and use of more than two asthma medications. Our study was different in that it looked at death from all causes in a cohort of patients, all of whom had been admitted to hospital for asthma. To this extent all the patients came from a single stratum of severity. Further stratification in terms of asthma severity makes little difference. We defined “clinically severe asthma” as any history of drowsiness as a result of asthma, loss of consciousness, respiratory arrest, mechanical ventilation, or admission to the ITU for asthma treatment. Taking the results in table 2 which shows the association between death and five risk factors and further stratifying by the presence of “clinically severe asthma” we found no observation in whom severity could not be determined. The odds ratio associated with taking ipratropium or Duovo changes from 2.9 (95% CI 1.2 to 7.0) to 2.7 (1.1 to 6.7) on losing this case, and to 2.7 (1.1 to 6.0) on adjustment for “clinically severe asthma”.

The Nebraska Taurodilin and B cepacia Bronchiectasis study was a randomised, double blind, placebo controlled, crossover study (“br-01 trial”) to assess the effect of nebulised taurodilin on her chronic B cepacia colonisation (primary outcome measure), spirometric tests, and inflammatory markers (serum and sputum concentrations of interleukins 6 and 8, C


2 Guite HF, Burney PGJ. Accuracy of recording deaths from asthma in the UK: the false negative rate. Thorax 1996;51:924–8.
higher concentration to be delivered may of taurolidine and its derivatives to allow a and without cystic fibrosis, and reformulation taurolidine is only available as a 2% solution. uses povidone as a solubilising agent which washout period. Every two weeks sputumcome measures). She was given 4 ml 2% tau- dilation to confirm that taurolidine was concordance between them was >95%. A biologists blinded to each others' results; were determined by two independent micro- V d i sappearance from the sputum within two bonds. 

Effect of salmeterol on airway eosinophils

Dente et al used the examination of induced sputum cell counts (as well as sputum eosinophil cationic protein (ECP), blood eosinophils and serum ECP) to examine the inhibitory effects of a single dose of placebo and salmeterol on allergen induced inflam- matory (as well as asthmatic) responses. They performed a crossover randomised study in 11 subjects who had two allergen challenges four weeks apart and found that salmeterol inhibited the allergen induced increases in sputum eosinophils but had no effect on the other inflammatory responses.

The results differ from the negative results recently to the eosinophilic response, as well as other parameters, was reported by us and Dente et al attribute this to differences in study design. We agree with this explanation but not for the reasons given. Their study design has a major flaw in the use of only one baseline measurement to investi- gation of two distinct interventions four weeks apart. The time of baseline measurements in relation to the randomised crossover design study was not given; we presume that it was at some appropriate point before the first aller- 

cysts, is innately reactive protein, total white cell count, eryth-

reactive protein, total white cell count, eryth- rocyte sedimentation rate) (secondary out-

The apparent difference between the effect of taurolidine in this formulation in our patient and in patients with cystic fibrosis raises interesting questions as to the mechanisms by which B cepacia survives in subjects with cystic fibrosis. These include the presence of a biofilm and intracellular survival of organ- isms allowed by the defective CFTR protein.

The current formulation of taurolidine uses povidone as a solubilising agent which may cause an unpleasant taste. Furthermore, taurolidine is only available as a 2% solution. We believe this agent may have a part to play in B cepacia infections in patients both with and without cystic fibrosis, and reformulation of taurolidine and its derivatives to allow a higher concentration to be delivered may improve its efficacy in patients with cystic fibrosis.

Correspondence to: Dr M J Walshaw

M J LEDSON C COWPERTWITE

M J WALSHAW

Regional Adult CF Unit,
The Cardiotoracic Centre, Liverpool L14 3PE, UK

M J GALLAGHER T WILLIETTS C A HART

Department of Medical Microbiology,
Liverpool University, Liverpool, UK

References


Effect of salmeterol on airway eosinophils

Dente et al used the examination of induced sputum cell counts (as well as sputum eosinophil cationic protein (ECP), blood eosinophils and serum ECP) to examine the inhibitory effects of a single dose of placebo and salmeterol on allergen induced inflam- matory (as well as asthmatic) responses. They performed a crossover randomised study in 11 subjects who had two allergen challenges four weeks apart and found that salmeterol inhibited the allergen induced increases in sputum eosinophils but had no effect on the other inflammatory responses.

The results differ from the negative results recently to the eosinophilic response, as well as other parameters, was reported by us and Dente et al attribute this to differences in study design. We agree with this explanation but not for the reasons given. Their study design has a major flaw in the use of only one baseline measurement to investi- gation of two distinct interventions four weeks apart. The time of baseline measurements in relation to the randomised crossover design study was not given; we presume that it was at some appropriate point before the first aller- 

References


Authors' reply In their letter Dr Pizzichini and colleagues disagree with our conclusion that salmeterol prevents allergen induced sputum eosinophilia. We do not agree with their opinion.

In the results section of our study it is clearly stated that comparison of sputum eosinophils, as well as other parameters, was made between measurements performed after allergen challenge following pretreat- ment with placebo or salmeterol. Our conclu- sions were made on the basis of this compar-ison and not by evaluating differences from baseline as is commonly used in other models in other studies. Only one baseline measure- ment was performed for several reasons: (1) it showed good reproducibility for sputum cell counts in two samples collected under similar

Figure 1 Effect of treatment with taurodilirne on colonisation with Burkholderia cepacia in a non-cystic fibrosis patient.
conditions); this assumption is used to consider unchanged cell counts in spumon in two tests with hypertonic saline performed under the same conditions except for allergen challenge or premedication as intervention; (2) it is a good rule to perform only a few challenge tests as it is less likely that the character-istics of the subjects will change if they are examined over a short period of time than when they have to perform many tests over a longer period of time. We have previously reported an influence of the shortness of the time interval between two subsequent aller-gen challenges. Moreover, the number of subjects in our study was adequate to study a difference in spumon eosinophils due to an intervention, as calculated by power analysis, but the number was too small to permit stratification for spumon eosinophils in the baseline evaluation.

In the second part of their letter Pizzichini et al quote from our paper that differences between their results and ours may be due to the large number of challenges that each patient performed in their study. Our sentence referred only to the large number of allergen challenges. In fact, if a lot of allergen challenges are performed over a short time there will probably be a worsening of asthma symptoms and late asthmatic response, and consequently an increase in the airway inflammation. If the large number of allergen challenges is performed over a longer period of time with an adequate interval between subsequent allergen challenges, there will probably be a worsening of asthma symptoms and late asthmatic response, and consequently a poorer repeatability is likely.

Finally, we think that the calculation of repeatability evaluating baseline series of data in the study by Pizzichini et al is correct. In fact, if similar conditions are maintained, having two or more different series of data of the same parameter is good for performing repeatability tests (as performed in our study).

FEDERICO L DENTE
PIER LUIGI PAGGIARO
Cardio-Thoracic Department, Pneumology Section, University of Pisa, Pisa, Italy

Acute Respiratory Distress Syndrome: A Comprehensive Clinical Approach

During little over three decades since its characterisation, the acute respiratory dis-tress syndrome, alone or as a part of the multi-organ dysfunction syndrome, has grown to constitute one of the major challenges facing intensive care specialists across the globe. Within the past decade major advances in our understanding of the aetiology and pathoph-ylosis of the condition and the introduc-tion of new treatment modalities and man-agement strategies have conspicuously failed to improve patient outcome significantly.

In this publication James Russell and Keith Whalley have produced an excellent pocket sized text that provides a comprehensive and up to date review of the current understand-ing and management of the acute respiratory distress syndrome, and which fills a valuable niche between the journals and larger refer-ence textbooks.

The book is divided logically into concise, easy to read chapters, supported by a wealth of tables, graphs and illustrations, with each chapter individually and comprehensively refer-enced. All aspects of the syndrome are addressed from epidemiology through mo-lecular biology, pathology and physiology, to resolution and recovery. Individual chapters deal with pulmonary and cardiovascular pathophysiology, mechanical ventilation and weaning, and innovative therapies. Clinical trials are reviewed and assessed in an unbiased, rational, evidence based manner, and recom-mendations for best practice are proposed upon the basis of available knowledge.

The major strength of the book, however, lies within the authoritative and holistic approach in those chapters pertaining to the clinical management of the patient with ARDS. The book is crammed full of useful practical advice, clinical expertise, and good common sense. I was particularly impressed with the chapters dealing with total patient care and nosocomial pneumonias, and de-lighted to see so many published algorithms and therapeutic guidelines. In addition, I thought that the insertion of a chapter giving a concise overview of ARDS and its manage-ment was an excellent idea. If trainees were to read no more than this, they would learn much.

There were very few things that I did not like about the book. Given the overall quality, I was disappointed with the standard of reproduction of the chest radiographs. The photomicrographs and pathology slides would have benefited by being in colour. In addition, the casual admixture of the terms “multiorgan dysfunction syndrome” and “multisystem organ failure” in chapter 13 runs against current vogue and may confuse the less experienced reader.

Nonetheless, I thought this an excellent text that should have broad appeal. It is relevant to all disciplines involved in the care of the critically ill, both as a reference text and as an easy to read manual for trainees. Furthermore, the diverse aetiologies and unpredictability of multiorgan dysfunction and acute respiratory distress syndromes make this book an invaluable reference for acute ward based staff who may become involved in the early care of this most challenging of conditions.—ML.
Risk factors for death from asthma

STEPHAN F LANES and J DOUGLAS WILSON

Thorax 2000 55: 91
doi: 10.1136/thorax.55.1.91

Updated information and services can be found at:
http://thorax.bmj.com/content/55/1/91.1

These include:

References
This article cites 4 articles, 4 of which you can access for free at:
http://thorax.bmj.com/content/55/1/91.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/