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Pulmonary alveolar proteinosis: clinical aspects
and current concepts on pathogenesis
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Pulmonary alveolar proteinosis was first de-
scribed by Rosen et al in 1958.1 It is an unusual
diVuse lung disease characterised by the accu-
mulation of large amounts of a phospholipo-
proteinaceous material in the alveoli. It has a
variable clinical presentation and course. Most
cases are primary but occasionally the condi-
tion is secondary to other conditions or inhala-
tion of chemicals. Whole lung lavage remains
the most eVective treatment and the overall
prognosis is good. Surfactant homeostasis is
abnormal and animal experiments suggest that
this may relate, in some instances at least, to
defects in GM-CSF signalling. There are at
least two congenital forms of the disease and
several diVerent animal models suggesting that
pulmonary alveolar proteinosis is unlikely to be
a single disease entity and more likely to repre-
sent a clinical syndrome.

Epidemiology
Pulmonary alveolar proteinosis is a rare lung
disease and accurate estimates of incidence are
not available. Current estimates suggest an
incidence of one in two million people. The
series reported in the literature suggest a male
preponderance (male:female ratio 3:1).1–11 Peak
onset is in the third or fourth decade of life with
over 80% of reported cases occurring in this
age group.1–9 However, there are reports of the
disease occurring in neonates,12 children,13–15

and the elderly.11

Clinical features
CLINICAL PRESENTATION

Dyspnoea is the most common presenting
symptom. It usually occurs on moderate
exertion but in a few patients occurs at rest.1–11

Cough is the other common symptom. These
symptoms are often trivial and some patients
do not present until they develop a supervening
infection. This may explain the acute onset of
symptoms and fever observed in some patients.
A low grade fever may also occur as a
consequence of pulmonary alveolar proteinosis
in the absence of secondary infection.6

Physical examination is often normal and
inspiratory crackles on auscultation is the com-
monest abnormality.1–11 Clubbing of the finger-
nails is present in about one third of cases.
Patients with advanced disease may have
central and peripheral cyanosis.1–11 Raised
serum levels of lactate dehydrogenase

(LDH),16–18 tumour markers,19–22 mucin like
glycoprotein (KL-6),23 and the surfactant pro-
teins A24 25 and D26 have been observed in pul-
monary alveolar proteinosis.

PULMONARY FUNCTION TESTS

The predominant abnormality is a restrictive
ventilatory defect8–10 with a reduction in lung
volumes and diVusion capacity. Obstructive
ventilatory changes are unusual but may be
observed in smokers. Hypoxaemia is a promi-
nent finding and patients with extensive disease
have an increased alveolar/arterial pressure dif-
ference (P(A–a)O2)

8–10 which widens further on
exercise.8 This is thought to be due to shunting
of blood from right to left through an intact
pulmonary capillary bed perfusing large num-
bers of poorly ventilated alveoli filled with lipo-
proteinaceeous material.8 Other contributory
mechanisms may be septal oedema and, in rare
cases, a degree of interstitial fibrosis has been
reported.10 27 28

Pulmonary function tests can be used to
assess disease severity, progression, and re-
sponse to treatment. Arterial blood gas ten-
sions, alveolar-arterial oxygen gradients, and
change in P(A–a)O2 gradient on exercise are
better predictors of disease severity and
functional impairment.8 10 Kariman et al10 sug-
gested that patients with an arterial partial
pressure of oxygen (PaO2) of greater than
9.3 kPa (70 mm Hg) or P(A–a)O2 gradient of
less than 5.3 kPa (40 mm Hg) are more likely
to improve spontaneously whilst those who do
not meet these criteria are more likely to
progress.

RADIOLOGY

Accumulation of phospholipoproteinaceous
material in the alveoli results in a non-specific
radiographic pattern of air space consolidation.
There are no ancillary signs or specific features
of the distribution of the consolidation to sug-
gest the diagnosis of alveolar proteinosis on the
basis of radiographic appearances alone.29–32

The consolidation is usually bilateral and
patchy and in some patients is very extensive,
despite relatively mild respiratory
symptoms.29 30 In some series of alveolar
proteinosis the patchy consolidation was peri-
hilar (bat’s wing pattern; fig 1A) in up to 50%
of cases.1 6 11 However, the distribution of con-
solidation is highly variable and may be
predominantly peripheral or basal (fig 1B).30 31
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The abnormalities may be asymmetrical in up
to 20% of cases11 and isolated lobar involve-
ment has been reported.33 34 Other radio-
graphic patterns that reflect air space filling
include poorly defined acinar nodules and
ground glass opacification, both of which usu-
ally occur in conjunction with more wide-
spread dense consolidation.35 Air broncho-
grams within the consolidated lung are not
usually a feature.

High resolution computed tomographic
(HRCT) scans of the thorax demonstrate the
expected appearance of widespread air space
consolidation, but also thickened interlobular
septa, clearly visible within the aVected lung
and producing the so called “crazy paving”
pattern (figs 2A and B).35 The extent of lung
involvement is more easily defined on CT scans
(which sometimes reveal sharply demarcated
geographical areas of lung involvement). As
with plain chest radiography, air bronchograms
are not a feature despite widespread pulmo-
nary consolidation. None of the CT studies
published to date has identified a specific lobar
or zonal distribution in this disease.36–38 Chest
radiographs and HRCT scans of the thorax are

of similar value for assessing disease severity.38

The appearances of alveolar proteinosis in
children are not well characterised but a
reticulonodular pattern, small nodules mimick-
ing miliary disease, and a coalescence of
various sized acinar nodules have been
described.39

It was initially suggested that the crazy
paving pattern in geographical areas of pulmo-
nary opacification were specific for alveolar
proteinosis. However, other conditions, most
notably lipoid pneumonia40 and bronchio-
alveolar cell carcinoma,41 can sometimes mimic
the CT features usually associated with alveo-
lar proteinosis.

PATHOLOGY

The gross pathological findings in pulmonary
alveolar proteinosis are patchy areas of yellow
consolidation with an oily substance exuding
from abraded surfaces. The classical finding on
light microscopy is filling of the alveoli and ter-
minal bronchioles with a granular lipoproteina-
ceous substance which stains a deep pink with
periodic acid SchiV (PAS) stain.1 The alveolar
architecture is usually well preserved although
septal thickening from oedema37 or lym-
phocytic infiltration has been observed.42

Ultrastructure analysis of lung specimens by
transmission electron microscopy (TEM)
shows abundant cellular debris and concentri-
cally arranged laminated annular structures
(lamellar bodies) within the alveolar lumen (fig
3).6 42–49 The structures range from uniformly
spaced laminated structures (fig 4A) to irregu-
lar whorl-like structures with or without a
dense osmiophilic core (fig 4B).50 51 These
structures represent phospholipids and are
identical to inclusions found in normal type II
pneumocytes.52 In contrast, tubular myelin
structures are sparse (aggregates with well
formed lattice structures that are formed in the
alveoli under normal circumstances). The few
alveolar macrophages that are present in the
alveoli are enlarged and contain numerous
complex phospholipoprotein inclusions (fig
5).53 The inclusions are similar to the lamellar
bodies and osmiophilic inclusions observed in
the alveolar lumen and type II pneumocytes.

BRONCHOALVEOLAR LAVAGE

Milky fluid is usually obtained on broncho-
alveolar lavage of an aVected segment.54–56

Examination of the cytospin demonstrates a
basophilic granular extracellular deposit with a
few enlarged foamy macrophages and cellular
debris on staining with May-Grünwald
Giemsa. The extracellular substance is stained
pink with PAS but negative with alcan blue,
which allows the diVerentiation of the phos-
pholipoprotein aggregates from mucins. The
cellular content is usually sparse and diVeren-
tial cell counts of the lavage fluid is usually
unhelpful in making the diagnosis; an inflam-
matory infiltrate may indicate a superimposed
infection.57 58 The ultrastructural appearance
on electron microscopy is characteristic with
abundant lamellar bodies and cellular debris
but only a few tubular myelin
aggregates.50 54–56 59 60 The alveolar macrophages

Figure 1 (A) Alveolar proteinosis: extensive confluent
nodular shadowing which merges with consolidation in a
predominantly perihilar distribution. (B) Unusual
distribution of consolidation in a patient with alveolar
proteinosis before lavage treatment. The shadowing is basal
and apical with sparing of the mid zones.
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are usually enlarged with abundant lipid inclu-
sions with the same ultrastructural characteris-
tics as those found in the extracellular material.

Numerous studies have characterised the
intra-alveolar material obtained following
bronchoalveolar lavage in patients with pulmo-
nary alveolar proteinosis. The major constitu-
ent of the lavage fluid is phospholipid, mainly
lecithin, the main component of surfactant.61–63

The lavage material also contains serum
proteins and surfactant specific proteins64–75

including increased concentration of surfactant
protein A (SP-A)76 and surfactant protein D.26

One of the SP-A oligomers in pulmonary
alveolar proteinosis tends to form large aggre-
gates which retain an ability to bind with phos-
pholipids but fails to form the uniform lattice
structure of tubular myelin.77

Various tumour markers have been detected
in the bronchoalveolar lavage fluid of patients
with pulmonary alveolar proteinosis.20 21 How-
ever, their diagnostic value is limited as they are
found in other pulmonary diseases.78–80

DIAGNOSIS

The diagnosis of pulmonary alveolar proteino-
sis can be made with confidence on the basis of
the appearance of the lung on the HRCT scan
of the thorax35 38 in conjunction with an exam-
ination of lavage fluid obtained from segmental
alveolar lavage.50 81 82 Examination by light
microscopy is adequate83 but ultrastructural
analysis by electron microscopy strengthens
the diagnosis. Transbronchial biopsy speci-
mens provide a tissue diagnosis84 but, in view of
the patchy nature of the disease, may be incon-
clusive. The procedure also carries the risk of a
pneumothorax or haemorrhage. Open lung
biopsy specimens obtained by the video
assisted thoracoscopic route have the same dis-
advantages, in addition to the potential for sur-
gical complications. Bronchoalveolar lavage
samples a larger distal lung field and is a much
safer procedure.

Treatment of pulmonary alveolar
proteinosis
Whole lung lavage is the safest and most eVec-
tive form of treatment for alveolar proteinosis.
Historically, treatment has included
corticosteroids,6 potassium iodide,3 and
streptokinase5 with variable success. Ambroxol
stimulates the intracellular formation and
secretion of surfactant85 86 and, although this
would be expected to exacerbate the intra-
alveolar accumulation of surfactant, there is a
single report of improvement in one patient
following treatment.87 Aerosolised trypsin has
been used to treat pulmonary alveolar
proteinosis88–90 on the grounds that trypsin
would hydrolyse the proteinaceous material
and hence improve clearance. Some of the
patients treated with trypsin developed an
allergic reaction and there is the potential for
proteolytic damage. However, none of these
studies was controlled and the response
observed in some patients may represent the
spontaneous improvement that is seen in up to

Figure 2 (A) Thin section CT scan through the upper lobes of a patient with alveolar
proteinosis. Note the spared secondary pulmonary lobules in the posterior lung giving a
geographical margin. Thickened interlobular septa are visible within the densely opacified
parenchyma producing a “crazy paving” pattern. (B) Section through the lower lobes of
another patient showing a similar pattern with several clearly demarcated patches of spared
lung.

Figure 3 Electron micrograph of lung specimen showing cellular debris and lamellar bodies
in the alveolar lumen. Bar represents 5 µm. (By courtesy of Ann Dewar, Electron
Microscopy Unit, Royal Brompton Hospital and Imperial College of Science, Technology
and Medicine at the National Heart & Lung Institute, London, UK).
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25% of cases.1 6 More recent developments
such as treatment with GM-CSF are discussed
later.

WHOLE LUNG LAVAGE

Whole lung lavage is now considered the treat-
ment of choice. The technique has evolved
since the early instillation of heparinised saline
via an intratracheal catheter.91 92 Although
there are no randomised controlled studies,
there is good evidence of eYcacy with several
studies showing improvement in exercise toler-
ance and symptoms following whole lung
lavage8–10 50 whilst others have shown objective
improvements in pulmonary function,9 10 arte-
rial oxygenation,8 11 50 and shunt fraction.8 10

Some studies have shown improvement follow-
ing the lavage followed by a gradual decline and
subsequent improvement following a repeat
lavage.8 10 Radiological clearing is less impres-
sive immediately after lavage but occurs more
gradually,93 the time period varying between
individuals.93 94 Whole lung lavage is associated
with improvements in macrophage function95

and a decreased incidence of opportunistic
infections.8 10 94

INDICATIONS FOR WHOLE LUNG LAVAGE

The main indication for whole lung lavage is
limitation in daily activities due to dyspnoea.
The threshold for lavage is therefore lower for a
person who works as a heavy labourer than
someone who has a sedentary lifestyle. Some
authors have suggested that patients with a
PaO2 of less than 9.3 kPa (70 mm Hg) or a
P(A–a)O2 of more than 5.3 kPa (40 mm Hg)
are more likely to progress and hence require
whole lung lavage.10

TECHNICAL ASPECTS OF WHOLE LUNG LAVAGE

The technique used at the Royal Brompton
Hospital is described in detail and is similar to
that practised at other centres. Following
induction of general anaesthesia, an experi-
enced anaesthetist introduces a double lumen
endobronchial tube. A careful check is made to
ensure that the two lungs are isolated. Both
lungs are ventilated with 100% oxygen for at
least 20 minutes to eliminate nitrogen from the
alveolar gas. The lung to be treated is then iso-
lated at the end of expiration. The volume of
that lung at the end of expiration is estimated
from preoperative measurements of functional
residual capacity (FRC). The volume of
oxygen is gradually absorbed from the non-
ventilated lung at a rate of approximately
100 ml/min. Warm (36–37°C) neutral sterile
saline (0.9% saline with 0.6 mmol sodium
bicarbonate per litre saline) is instilled into the
lung through a closed system at the same rate
as oxygen is adsorbed until the estimated FRC
value has been reached. At this point the lung is
completely de-gassed and full of saline. Tidal
volume increments (500–1200 ml) of the
saline are let into the lung under gentle gravita-
tional force—that is, a saline column of not
more than 50 cm—and then let out again via
the closed system into a measuring cylinder.
The temperature, volume of saline instilled,
and fluid balance is carefully controlled. The
initial returns are typically very milky or turbid
and the process of filling and draining the lungs
with saline is repeated until the eZuent
becomes clear. Total volumes of saline required
can range from 20 to 40 l. At the end of the
procedure the residual saline is drained and
aspirated from the lung and ventilation with
100% oxygen is resumed. The double lumen
tube is replaced by an endotracheal tube and
the patient transferred to the recovery unit for
approximately one hour of postoperative venti-
lation. At the end of this recovery time any
residual neuromuscular block is antagonised
and the patient is awakened and extubated.
Patients are transferred back to the ward within
the following hour.

It has recently been possible to perform
bilateral sequential whole lung lavage in the
same treatment session. The principles are
identical except that at the end of the lung lav-
age of the first lung a decision is made on the
ability of the patient to tolerate one lung venti-
lation of the lung that has just been treated.
The second lung is then isolated and treated as
described above.

The process of whole lung lavage is slow
(2–4 h) and requires an experienced theatre

Figure 4 Electron micrographs of lamellar bodies demonstrating (A) the uniformly
arranged concentric laminated structure and (B) more irregular whorl-like structure with
dense osmiophilic core. Bar represents 0.5 µm. (By courtesy of Ann Dewar, Electron
Microscopy Unit, Royal Brompton Hospital and Imperial College of Science, Technology
and Medicine at the National Heart & Lung Institute, London, UK).

Figure 5 Electron micrograph of a foamy macrophage
containing numerous complex phospholipid inclusions. Bar
represents 5 µm. (By courtesy of Ann Dewar, Electron
Microscopy Unit, Royal Brompton Hospital and Imperial
College of Science, Technology and Medicine at the
National Heart & Lung Institute, London, UK).
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team and postoperative facilities. The key
components to ensuring safety is an anaesthet-
ist who is very skilful in the placement of the
double lumen endobronchial tube and meticu-
lous monitoring to ensure that the two lungs
remain isolated throughout the procedure.

Some centres use manual percussion and
positional drainage during lavage to improve
the removal of surfactant. A randomised study
showed that optical density of recovered lavage
fluid was greater from patients who received
manual percussion than in those who received
percussion using mechanical devices or no
percussion.96

A recent report suggested that manual venti-
lation during the second half of the drainage
cycle might aid surfactant clearance,97 but this
was a single report of an individual who failed
to respond to conventional lavage. After half
the instilled volume had drained, the lung was
ventilated manually 20 times with a tidal
volume of 500 ml and then allowed to drain
freely. The clearance of surfactant was in-
creased despite a considerable reduction in the
volume of lavage fluid used.97 The technique
requires controlled assessment as there is a
greater potential for complications such as
barotrauma and increased absorption of lavage
fluid.

OUTCOME OF WHOLE LUNG LAVAGE

In our experience over 60% of patients have a
good response within two lung washes per
lung, a good response being defined as
complete return to normality in terms of exer-
tional capacity as judged by the patient. This is
consistent with reports from the literature,
which confirms that only a few patients require
more than six cycles of lung lavage.8 10 11 94 A
small proportion (<15%) require lavage every
six months to maintain their functional status8

and fewer than 10% are non-responders.

SAFETY OF WHOLE LUNG LAVAGE

The major adverse eVect from whole lung lav-
age is hypoxaemia which can be improved by
ventilation with a high inspired oxygen
concentration.91 98 99 Arterial oxygenation im-
proves during the filling phase due to the
increase in airway pressure and shunting of
blood to the contralateral ventilated lung.99

Emptying of the lung causes a decrease in air-
way pressure and perfusion of the surfactant
filled alveoli creates a shunt in the lung under-
going treatment and hence a fall in PaO2.

99

Haemodynamic changes occur with single lung
ventilation98 100 but invasive monitoring is
unnecessary in most cases.101 Hyperbaric
oxygen,102 partial cardiopulmonary bypass,103

and temporary venovenous extracorporeal gas
exchange104 105 have been used as supportive
measures for patients with severe hypoxaemia
and in children undergoing whole lung lavage.

The major risks of whole lung lavage
concern the correct placement of the double
lumen endobronchial tube with overspill of
lavage fluid into the ventilated lung being the
main risk. Expert placement and checking for
leaks prior to lavage and throughout the proce-
dure are essential safety measures. Barotrauma

can occur with rapid instillation of large
volumes of fluid. Other reported complications
include pleural collections, hydropneumotho-
races, and surgical emphysema.10 11 The risk of
hypothermia is minimised by careful monitor-
ing of the patient’s core temperature. The
patient lies on a heated mattress and is covered
with a convective heated blanket. The lavage
fluid temperature is controlled using an in-line
heat exchanger.

MULTIPLE SEGMENTAL LAVAGE

Multiple segmental or lobar lavage by fibre-
optic bronchoscopy is a possible alternative to
whole lung lavage.106 107 The advantages are
that general anaesthesia is avoided and it may
be performed in patients in whom whole lung
lavage would be hazardous. However, the yield
by this method is small and the volumes of lav-
age fluid limited. Hence, multiple lavages are
required and this makes the procedure less tol-
erable than whole lung lavage. Lobar lavage
with trypsin has also been attempted but the
data are limited to two patients with no clear
evidence of eYcacy.107 This technique also car-
ries the potential of proteolytic damage.

Prognosis
The major complication of pulmonary alveolar
proteinosis is infection with unusual organisms
such as Aspergillus species,108 Nocardia
species,109–113 Mycobacterium species,17 114–117

Cryptococcus neoformans,118 Histoplasma
capsulatum,119 Pneumocystis carinii,120 and
viruses.121 This susceptibility is multifactorial;
impaired macrophage function,122 impaired
host defence due to abnormalities of surfactant
proteins, and the rich intra-alveolar accumula-
tions may favour the growth of
micro-organisms.123 These unusual infections
were responsible for some of the mortality
associated with pulmonary alveolar proteinosis
in the past.1 6 124 In contrast, we have had only
one case of opportunistic infection complicat-
ing pulmonary alveolar proteinosis at our cen-
tre, an experience shared by other centres since
the advent of treatment with whole lung
lavage.8 10 94 Corticosteroids should not be used
as empirical treatment for alveolar proteinosis
due to its potential to exacerbate opportunistic
infections.

The development of interstitial fibrosis in
patients with pulmonary alveolar proteinosis
has been reported in isolated cases,27 28 125–127

though whether this is a causal finding or coin-
cidental occurrence is uncertain. One patient
died from progressive pulmonary fibrosis.27

Other rare reports include the development of
emphysematous bullae,127 128 pneumothorax,129

and asphyxia due to alveolar flooding in a
patient during general anaesthesia.130

The overall prognosis for alveolar proteinosis
treated by whole lung lavage is excellent. There
are also several reports of spontaneous
resolution,131–134 and series prior to the intro-
duction of whole lung lavage quote spontane-
ous improvement in up to 25% of patients.1 3 6
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Pathogenesis
NORMAL SURFACTANT HOMEOSTASIS

Surfactant homeostasis is a complex dynamic
process involving alveolar type II cells and
macrophages. The hydrophobic (surfactant
proteins B and C) and hydrophilic (surfactant
proteins A and D) proteins associated with the
surfactant and the phospholipids are synthe-
sised and secreted mainly by alveolar type II
cells. The importance of surfactant proteins B
and C (SP-B and SP-C) in surfactant homeo-
stasis is well established from findings such as
their ability to accelerate the adsorption of lip-
ids to an air-liquid interface.135 136 The roles of
SP-A and SP-D on lipid interactions is less
clear.

The freshly synthesised surfactant complex
is packaged in lamellar bodies within alveolar
type II cells and then released from these intra-
cellular storage granules into the liquid hypo-
phase covering the alveolar epithelium.137 The
material secreted from the lamellar bodies is
transformed by an as yet ill-defined pathway
into a lattice like structure known as tubular
myelin.138 From this structure the phospholip-
ids spread over the epithelial surface to form a
monolayer film, rich in dipalmitoylphosphati-
dylcholine, which reduces the surface tension
forces tending to collapse the lung. Alveolar
type II cells and alveolar macrophages have an
important role in uptake, degradation, and
recycling of surfactant.139–141 Surfactant protein
A may play a part in the re-uptake of
phospholipids and regulate the secretion of
surfactant140–143 but its precise role remains
unclear. The lipid monolayer also regulates
secretion of phospholipid, presumably by alter-
ing exocytosis.144 This process is influenced by
the amount of saturated phospholipid in the
lipid monolayer.144

MACROPHAGE FUNCTION IN PULMONARY

ALVEOLAR PROTEINOSIS

Alveolar macrophages in pulmonary alveolar
proteinosis have defective chemotaxis,122

phagocytosis,145 146 and phagolysosomal
fusion.147 These defects are thought to be
acquired since normal macrophages develop
impaired phagocytic activity following incuba-
tion with lavage fluid from patients with
pulmonary alveolar proteinosis. The lipopro-
teinaceous material also acts as a scavenger for
free radicals and hence impairs the oxidative
burst that occurs in macrophages during
phagocytosis.148 Binding of SP-A and SP-D to
the collectin receptor on alveolar macrophages
initiates the oxidative burst in macrophages149

and enhances phagocytosis.150 Surfactant pro-
teins bind to various bacteria,151 influenza A
virus,152 and Cryptococcus neoformans153 and this
facilitates the uptake of these organisms by
alveolar macrophages. The important role of
surfactant proteins in host defence may explain
the higher incidence of opportunistic infections
associated with pulmonary alveolar
proteinosis.1 6

DISEASE ASSOCIATIONS

A number of cases of pulmonary alveolar pro-
teinosis have been described in association with

other diseases or a definite aetiological agent
and have been termed secondary pulmonary
alveolar proteinosis. Secondary pulmonary
alveolar proteinosis can be distinguished from
primary or idiopathic disease on the basis of
the staining pattern of surfactant specific
apoproteins in histological specimens.64 In pri-
mary cases a uniform staining pattern is seen
while in the secondary form of the disease a
patchy focal pattern occurs.64 Pulmonary al-
veolar proteinosis has been described in associ-
ation with immunodeficiency states154 155 and
haematological malignancies.124 It is more
common in myeloid leukaemias156–161 but has
also been reported in lymphomas,124 Fanconi’s
anaemia,162 163 and IgG monoclonal
gammopathy.164 The overall incidence of sec-
ondary pulmonary alveolar proteinosis in
patients with haematological malignancies is
5.3%, though it is higher in neutropenic
patients (8.8%) and in those with acute
myeloid leukaemia (10%).165 However, most
cases are mild and require no intervention.
Treatment of the underlying condition may
produce improvement but whole lung lavage
may need to be considered in patients who are
very symptomatic.

In a number of cases of pulmonary alveolar
proteinosis there has been a history of exposure
to chemicals and mineral dusts.6 One study
reported greater amounts of birefringent parti-
cles in lung tissue in over three quarters of
patients with pulmonary alveolar proteinosis in
comparison with controls.166 Specific reports
have included exposure to aluminium dust,167

titanium,168 and drugs such as busulfan and
chlorambucil.169 Similar changes have been
reported in sandblasters exposed to high levels
of silica dust.170–172

Animal experiments have reproduced the
pathological features of pulmonary alveolar
proteinosis following exposure to a variety of
mineral dusts and drugs such as iprindole.173–178

However, extrapolating the experimental
model to the human disease is diYcult,
especially as eVects of agents are specific to
species and dependent on dose and environ-
mental conditions.43

GENETIC PREDISPOSITION

Congenital alveolar proteinosis was identified
as an autosomal recessive inherited
deficiency179 and a deficiency in SP-B was sub-
sequently identified as the cause of the
disease.180 Further studies have revealed two
mutations in the SP-B gene, a frameshift
mutation consisting of a substitution of three
bases (GAA) for the single nucleotide C in
codon 121 (121ins2)181 and a deletion of one
base pair at (122delT),182 resulting in a prema-
ture stop codon and the absence of SP-B in
surfactant. Congenital alveolar proteinosis is a
genetically heterogenous disease exhibiting a
wide range of phenotypic variations183 184 which
implicates the involvement of other loci or
novel SP-B mutations in its manifestations.183

Studies on cells cultured from patients with
congenital alveolar proteinosis with normal
SP-B protein levels have found normal levels of
granulocyte colony stimulating factor (GM-
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CSF) but reduced expression of the âc
receptor for GM-CSF/IL-3/IL-5 in three
patients.185 In one of the patients a point muta-
tion (proline to threonine at codon 602) in the
âc receptor gene was identified.185

ANIMAL MODELS

Three murine models have shed new light on
the mechanisms underlying alveolar proteino-
sis and strengthening the association of defi-
ciencies in haemopoietic cells with alveolar
proteinosis. Knockout mice of both
GM-CSF186 187 and the GM-CSF receptor
(generated by disruption of the gene for the
murine common â chain of the GM-CSF/IL-3/
IL-5 receptor)188 189 show perturbed surfactant
homeostasis leading to pulmonary alveolar
proteinosis. There is defective expression of the
receptor on both alveolar macrophages and
type II pneumocytes. Detailed studies of
surfactant metabolism, incorporation of phos-
pholipids, and expression of surfactant protein
messenger RNA in these models suggest that
the abnormalities of pulmonary alveolar protei-
nosis are likely to be due to abnormal
surfactant catabolism rather than
synthesis.190 191 The evidence also suggests that
surfactant clearance is aVected by defects in
GM-CSF signalling.192 Defective GM-CSF
receptor expression has been observed on leu-
cocytes in acute myeloid leukaemia and may
account for the high incidence of pulmonary
alveolar proteinosis in this condition.193 The
fourth gene implicated in alveolar preoteinosis
is at the Itch locus; it encodes a gene product of
the ubiquitin machinery which is thought to
influence the regulation of haemopoietic cell
growth and diVerentiation. Disruption of this
locus leads to a complex fatal disease which
includes pulmonary inflammation and alveolar
proteinosis.194

HYPOTHESIS OF DISEASE MECHANISMS IN

PULMONARY ALVEOLAR PROTEINOSIS

The complex process of surfactant homeosta-
sis, the occurrence of at least two diVerent con-
genital forms, and the presence of diVerent
animal models suggest that pulmonary alveolar
proteinosis represents a clinical syndrome
rather than a single disease.

Deficiency or complete lack of SP-A is
unlikely to be implicated in the pathogenesis of
pulmonary alveolar proteinosis as illustrated by
the murine models,195–197 but structural abnor-
malities of surfactant proteins may cause an
imbalance in the surfactant life cycle. Sur-
factant proteins have a complex structure with
distinct binding domains, and structural ab-
normalities that allow them to interact but not
activate receptors may interfere with surfactant
homeostasis. Abnormal oligomers of SP-A
have been identified in patients with pulmo-
nary alveolar proteinosis.198–200 Abnormal multi-
merised SP-A isolated from patients with
pulmonary alveolar proteinosis failed to form
tubular myelin and had a lower aYnity to bind
to type II cells.199 The multimerised oligomer
was a less eVective inhibitor of lipid
secretion.199 It is unclear whether the abnormal
proteins are a consequence of alveolar stasis or

the primary defect. The complex protein
structure may be susceptible to denaturation
and may explain the association of some cases
of pulmonary alveolar proteinosis with expo-
sure to high levels of inhaled minerals and
chemicals.6

The presence of an antagonist for the
surfactant protein receptors would be expected
to have much the same eVect. The removal of
abnormal oligomers of surfactant proteins or
receptor antagonists may explain the gradual
improvements observed after lung lavage. Dif-
ferential changes in surfactant composition
leading to a greater decrease in SP-A following
lung lavage also support this hypothesis.201 The
various surfactant components have diVering
clearance rates and changes in composition
following lavage suggests a restoration of
normal surfactant homeostasis.

Evidence from the murine models and the
occurrence of pulmonary alveolar proteinosis
in haematological malignancy suggests that
imbalances in cytokines, particularly IL-10 and
GM-CSF, may lead to abnormal surfactant
metabolism. Investigation of GM-CSF expres-
sion in one patient with pulmonary alveolar
proteinosis suggested that expression of mes-
senger RNA for GM-CSF was normal but
there was a failure to secrete GM-CSF.202 This
study demonstrated high basal levels of IL-10,
a potent inhibitor of cytokine secretion at the
transcription level,203 204 and the addition of
IL-10 antibody normalised secretion of
GM-CSF.202 These results are beginning to
illustrate the complex role of cytokines in
surfactant homeostasis. Secretagogues also
regulate the number of cellular receptors205 act-
ing through protein kinase C or cyclic AMP
pathways to raise cytosolic Ca2+ levels. Abnor-
malities in intracellular processing and expres-
sion of receptors may also lead to abnormal
surfactant homeostasis.

In murine models bone marrow transplanta-
tion reverses the intra-alveolar accumulation of
surfactant206 but the lymphocytic infiltrate
persists.207 Lung transplantation has been con-
sidered for some individuals with alveolar pro-
teinosis but there is a report of recurrence fol-
lowing double lung transplantation.208 This
suggests that a systemic factor may be involved
in some cases of the disease. It is possible that
there is a defect in cellular mechanisms or
receptor involving macrophages and type II
pneumocytes. Correcting only one of these
defects by lung transplantation or a bone mar-
row transplant may not lead to a complete
cure. Furthermore, the spontaneous occur-
rence of alveolar proteinosis has been reported
in patients following lung transplantation.209

Future potential treatments
The murine models of GM-CSF deficiency
emphasised the role of GM-CSF in surfactant
homeostasis.187–190 One patient who failed to
respond to lung lavage has been treated with
recombinant GM-CSF with an improvement
in exercise tolerance, partial clearing of alveolar
infiltration on the chest radiograph, and an
improvement in the P(A–a)O2 gradient.210

There was reasonable evidence of eYcacy in
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this single case with a time course pattern of
improvement in the P(A–a)O2 gradient follow-
ing treatment with GM-CSF, deterioration on
discontinuation of treatment, and improve-
ment on resumption of treatment. The treat-
ment of three further patients with GM-CSF
has been recently reported in abstract form.211

Only one patient responded and the degree of
improvement was similar to previous improve-
ments seen with whole lung lavage in that indi-
vidual. Potential side eVects of GM-CSF are
local reactions, fever, myalgia, headache, and
flu-like reactions. More serious side eVects
include anaphylaxis, cardiac failure, and leaky
capillary syndrome. Other disadvantages are
the need for a daily subcutaneous injection and
the high cost of GM-CSF.

Gene therapy may be a future treatment
option in patients with specific genetic defects.
This may include patients with a congenital
abnormality of surfactant protein B181–183 and
defect in the â chain of the common receptor
for GM-CSF/IL-3/IL-5.186 Other genetic disor-
ders are likely to exist as illustrated by the gene
knockout murine models. Transfection with
DNA for SP-B and SP-A has been shown to
express surfactant associated protein cDNA in
vitro in human epithelial cell lines and in vivo
in rats.212 The selective expression of GM-CSF
in type II pneumocytes in GM-CSF deficient
mice corrects the alveolar proteinosis observed
in the deficient animals and highlights the
potential of genetic therapy in the future.192

Summary
Pulmonary alveolar proteinosis represents a
syndrome with a number of possible aetiolo-
gies. The appearances on the HRCT scan of
the thorax will often suggest the diagnosis and
should be confirmed by examination of
bronchoalveolar lavage fluid. Whole lung
lavage appears to be the most eVective form of
treatment and is a safe technique in experi-
enced hands. The overall prognosis is excellent
with treatment. A few patients are resistant to
whole lung lavage. It is important to investigate
these non-responders further as they may
respond to some of the more targeted treat-
ments.

The authors thank Ann Dewar for providing the electron
micrographs used in this publication.
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