Case report

Effective immunosuppressive therapy in a patient with primary pulmonary hypertension

F Bellotto, P Chiavacci, F Laveder, A Angelini, G Thiene, R Marcolongo

Abstract

The case history is described of a young woman who presented with primary pulmonary hypertension and non-specific inflammatory signs. The patient received prolonged immunosuppressive treatment with low dose methotrexate and prednisone without any vasodilator agent. After one year the pulmonary artery pressure fell from a mean value of 47 mm Hg to 30 mm Hg and there was a corresponding clinical response. This case suggests that, in patients with pulmonary hypertension of unknown origin, immunopathogenetic factors should be sought in order to consider the utility of immunosuppressive therapy.

(Thorax 1999;54:372–374)

Keywords: pulmonary hypertension; methotrexate; transforming growth factor β

Primary pulmonary hypertension (PPH) is a rare disease of unknown origin that should be suspected in any young patient who presents with unexplained effort dyspnoea and electrocardiographic signs of right ventricular hypertrophy in the apparent absence of any underlying cause. Pulmonary hypertension clinically and histologically similar to PPH has been described in association with connective tissue diseases and other immunological disorders, also in the absence of any parenchymal lung involvement. Primary forms usually show a rapidly progressive course despite treatment, with a mean survival of 2.5 years. We describe a patient with PPH who, after treatment with immunosuppressive therapy, showed a clinical improvement.

Case report

A 25 year old woman was admitted in December 1994 because of the recent onset (less than six months) of rest dyspnoea (NYHA class III), cough, cyanosis, hypotension (80/60 mm Hg), tachycardia (120–130 bpm), and congestive heart failure. She had a five year history of recurrent mild temperature elevation, asthenia, myalgia, arthralgia, transient diffuse lymphadenomegaly, neutrophil leukocytosis, and persistent elevation of acute phase reactants, despite anti-inflammatory therapy. Tests for antinuclear (ANA and ENA) and antiphospholipid antibodies, rheumatoid factor, ANCA and other autoantibodies, HIV and other infectious agents were always negative. The patient had never been pregnant nor used appetite suppressants or any other drug potentially able to induce pulmonary hypertension. There were no signs suggestive of connective tissue disease.

Laboratory tests gave the following results: erythrocyte sedimentation rate, 29 mm/h; fibrinogen, 5.32 g/l (normal 2.0–4.0 g/l); antithrombin III 1.42 IU/ml (normal 0.8–1.2); positive indirect antiglobulin test; serum IgE, 1.817 kU/l (normal <200) with negative RAST; serum IgG, 19.30 g/l (normal 8.0–15.0 g/l); serum IgA, 0.32 g/l (normal 1.00–4.90 g/l); ferritin, 1808 ng/l (normal 4–233 ng/l); positivity for HLA-DR4 antigen; moderate increase in peripheral blood CD8+ lymphocytes. Other routine tests were negative or normal.

Lung scans with 99m-technetium labelled albumin macroaggregates and 133-xenon gas and deep vein Doppler ultrasonography of the lower extremities were normal. The electrocardiogram, which had been normal six months earlier, showed signs of right ventricular (RV) pressure overload. The chest radiograph showed normal lung fields and a marked distension of the main pulmonary artery. Echocardiography revealed moderate RV hypertrophy and dilatation, with an RV ejection fraction of 39%, mild tricuspid incompetence, and an estimated pulmonary pressure of 75 mm Hg. Spirometric findings were normal: FEV1 2.43 l (94% of predicted normal) and FVC 2.60 l (119% of predicted normal), FRC 75%, T LCO was 23.5 ml CO/min/mm Hg. Right heart catheterisation showed a pulmonary arterial pressure of 65/30 (mean 47) mm Hg, pulmonary capillary wedge pressure of 3 mm Hg, cardiac output 3.6 l/min, and vascular resistance of 12.2 Wood units. Mean values of pulmonary arterial and capillary wedge pressures and vascular resistance were substantially unaffected by prolonged intravenous infusion of diltiazem (15 mg/kg/min for four hours) or supplemental oxygen.
Immunosuppressive therapy for pulmonary hypertension

373

= pulmonary artery pressure; R = vascular resistance.

methotrexate; ESR = erythrocyte sedimentation rate; PAP

immunosuppressive treatment. PDN = prednisone; MTX =

Figure 1 Relationship between the clinical course and

Open lung biopsy specimens showed diffuse involvement of small arteries and arterioles, intimal fibrocellular proliferation and severe luminal narrowing; there were no signs of inflammatory, thromboembolic, or pulmonary veno-occlusive disease, suggesting the diagnosis of PPH.4 Immunofluorescence staining for immunoglobulins, complement, and fibrinogen was negative.

Given the rapid progression of the disease, the lack of any acute reactivity to vasodilator agents, and the suspicion of an immune mediated pathogenetic mechanism because of the persistent signs of systemic inflammation, immunosuppressive therapy with oral prednisone (1.5 mg/kg/day for one month gradually tapering to 5 mg/day over six months) and methotrexate (7.5 mg/week over 36 hours followed by low dose folinic acid, 2.5 mg/week) was administered for one year with the patient’s informed consent.

The patient received only immunosuppressive treatment without any vasodilator or anticoagulation. She became completely asymptomatic in a few weeks, the inflammatory indices steadily returning to within normal ranges. The patient’s quality of life improved dramatically (NYHA class I), enabling her to perform even some sports. A right heart catheterisation control after 12 months showed a marked reduction in both pulmonary arterial pressure (43/18 mm Hg, mean 30) and vascular resistance (4.36 Wood units) with a cardiac output of 5.5 l/min. The electrocardiographic signs of RV overload were no longer present and RV function appeared normal on echocardiography.

After 30 months methotrexate has been discontinued and the patient, who is still taking prednisone, 5 mg/day, remains well.

Discussion
In this patient immunosuppressive therapy alone produced a significant decrease in pulmonary vascular resistance, steadily reducing the right heart overload and leading to the complete remission of any sign or symptom of pulmonary hypertension. The variable clinical course of PPH and the fact that some patients will remit spontaneously without treatment have been described previously5 so we cannot theoretically exclude the possibility of a spontaneous remission that occurred coincidentally with immunosuppressive treatment. Nevertheless, there is a close temporal relationship between immunosuppression and disease remission (fig 1).

It has recently been shown that plexogenic arteriopathy may result from deregulated endothelial cell growth.6 Functionally activated immunocompetent cells surrounding the pulmonary vessels, even in small numbers, may be responsible for the production of local mediators that could favour abnormal endothelial proliferation. In fact, lymphocyte and macrophage released cytokines and growth factors, in addition to the appearance of systemic manifestations, seem also to be involved in pulmonary vascular remodelling.5,6 Both the release of immunologically derived factors such as interleukin 1 and transforming growth factor β, and of endothelium derived vasoconstrictive factors (thromboxane and endothelin) together with the impaired production of vasodilator molecules (prostacyclin and nitric oxide), might equally account, at least in some cases, for the pathogenesis of PPH.1 Thus, pulmonary hypertension and pulmonary vascular remodelling are linked and are mutually self-sustaining.8

In patients with NYHA class III or IV and no response to oral calcium channel blockers or a moderate to minimal fall in pulmonary vascular resistance in response to short acting vasodilators, anticoagulation and long term epoprostenol infusions are currently recommended as a possible bridge to lung transplantation.1 Although immunosuppressive agents are not usually used in these patients, their rational use may be appropriate in some instances. Indeed, by inhibiting the production of pro-inflammatory and proliferative fibrogenic cytokines, and by controlling both immunologically induced intimal hyperplasia and the general immune response, immunosuppression might theoretically arrest and even relieve vascular obstruction and systemic symptoms, interrupting the vicious circle of “cell growth-vasomotor coupling”.9

Favourable effects have been anecdotally reported in patients with pulmonary
hypertension associated with autoimmune disorders who have been treated with other immunosuppressive agents such as cyclophosphamide or cyclosporin A. However, the possible efficacy of methotrexate and prednisone in PPH observed in our patient needs to be confirmed.

Since a recent study reported that a subset of patients with PPH may have an immune mediated disease,1,2 we suggest that even minor signs of immune activation should be carefully evaluated in patients with pulmonary hypertension of unknown origin in order to assess the pathogenetic responsibility of immune factors. We suggest further study of the effect of immunosuppressive therapy on a subgroup of patients with severe and uncontrollable PPH, candidates for lung transplantation, to test the hypothesis of a direct drug induced beneficial effect that is not coincident with spontaneous remission.


LETTERS TO THE EDITOR

Resection rates in lung cancer

The recent article by Laroche et al is an eloquent reminder that standardised care, hopefully based upon evidence (or at least consensus), can help to ensure that the quality of care is based less on postcode and more upon evidence (or at least consensus) used may be very different. One study quoted by Laroche et al from the Netherlands described a resection rate for lung cancer of over 20%, but used a denominator made up only of patients with a histological diagnosis seen at the related hospitals. The UK data commonly available are comprised cases with and without histological verification, including those notified by death certification.

The proportion of lung cancer notifications without histological confirmation registered at the West Midlands Cancer Intelligence Unit was over 40% in 1996. Many cases of lung cancer present in a terminal phase and, whilst it is recognised that some of these should perhaps have accessed the health care system earlier, a significant number of cases have truly malignant disease with very few symptoms right up until death.

This ‘denominator decrease’ is also apparent in a frequently quoted paper from Belgium in which the study population was restricted to those who attended the hospital clinic.1 Examination of the paper quoted from the USA by Humphrey et al2 shows that the denominator is reduced further as it excludes patients who had a histological diagnosis made at necropsy.

It is useful to refer back to a British paper published in the last decade based upon Cancer Registry data. Watkins et al3 quoted a 45% surgical intervention rate in patients with a histological diagnosis, considerably higher than elsewhere in the world. However, this represented a resection rate of 12% for all registered lung cancer patients. Data from the West Midlands Cancer Intelligence Unit show that the resection rate in 1996 was 20% for patients who had their lung cancer histologically confirmed before death yet 10.4% if all notifications were included in the denominator.

Comparisons of process measures have their problems which are only made worse when the denominator is not comparable.

The results published by Laroche et al are interesting but longer term figures are needed to ensure that the described resection rates do not fall and, more importantly, that better patient outcomes are also observed, which are to be expected, if more patients are undergoing curative procedures. Whilst important points have been emphasised about access and information for the population, we must also strive towards comparing outcomes of care rather than just process detail. Furthermore, if process is to be compared, let us ensure that like is compared with like, an argument rightly used with respect to outcomes (case mix, stage etc).

Patients with lung cancer should have good quality care and good outcomes: this is rightly the message made by Laroche et al, not a dogma based upon spurious process comparisons.

ADRIAN PHILLIPS
Wolverhampton Health Authority,
Comston House,
Chapel Ash,
Wolverhampton WV3 0XE,
UK

GILL LAWRENCE
West Midlands Cancer Intelligence Unit,
Public Health Building,
The University of Birmingham,
Birmingham B15 2TW,
UK


AUTHORS’ REPLY

We agree with the letter by Dr Phillips and Dr Lawrence concerning the difficulty of defining the denominator for an accurate surgical resection rate. In Papworth we do know that the two stop lung cancer service has led to more than a doubling of the total number of patients undergoing surgical resections at Papworth. There was no increase in the number of patients undergoing pneumonectomy compared with lobectomy, failed thoracotomies, or increase in stage of disease.

This surgical resection rate has persisted since the start of the two stop service in 1995 and has continued to increase. Increasingly regions serviced by the surgical unit at Papworth that do not use the two stop service have also reported an increase in the number of patients being referred for surgery in the last year. However, this increase has been associated with an increase in the failed thoracotomy rate and also with an increase in the...
number of patients undergoing pneumonectomy compared with lobectomy. We conclude that before the two stop service was established there was a significant number of patients with operable disease who were not being identified, but that multidisciplinary review of potential operable patients is necessary to prevent inappropriate referrals for surgery.

C M LAROCHE Papworth Hospital, Papworth Everard, Cambridge CB3 8RE, UK

Surgical resection rate in lung cancer

We read with interest the study of Laroche et al.1 Clearly the system they describe with a multidisciplinary clinic and specialist surgical input will enhance the investigative process and so probably improve the quality of the care of patients presenting to a respiratory service with possible lung cancer. We commend the authors on this.

We do, however, have serious questions as to whether the resection rate of 25% quoted is actually a true reflection on the resection rate for the whole population of patients with lung cancer within the area. In other words, it is essential to know what the absolute denominator was.

A review of registry data in the former Yorkshire region shows that only half the patients with lung cancer present in the “classical” way to a respiratory physician with a prior diagnosis of possible lung cancer. Virtually all patients who do prove operable are found in the half who present in the classical way. If experience is similar in East Anglia, then the denominator should be doubled.

In addition, we are concerned that some patients with advanced chronic obstructive disease or metastatic lung cancer would not have been referred to the clinic by the nine hospitals that supplied data to the study. Patients with presumptive lung cancer were excluded from the denominator is unclear, and again will improve the apparent resection rate. We note that a number of patients were referred direct specifically for surgery from outside the area, so increasing the numerator.

The authors describe an innovative process for the management of the patient with presumed lung cancer. However, it would be inappropriate to regard the 25% resection rate quoted as a benchmark and a possible audit standard for other lung cancer services, particularly where comorbidity is likely to be higher than in East Anglia.

C K CONNOLLY Consultant Physician, Darlington, UK


Repeatability of breathlessness measurements in cancer patients

Visual analogue scales (VAS) and numerical rating scales are commonly used to assess breathlessness in patients with cancer.1,4 Their repeatability in this situation has not, however, been assessed in a way that allows the calculation of the sample size required to design studies with sufficient power to detect a change in breathlessness. We asked 31 patients with breathlessness due to cancer to complete a 100 mm VAS and a numerical rating scale (from 0 to 10) on three occasions, twice on one day one hour apart and then again after a mean (range) of 2 (1–8) days. Patients were asked to rate their breathlessness “right now” and “the worst and average severity of breathlessness” over the past 24 hours.

Sample sizes were calculated using the following equation:

where σ is the standard deviation of the difference between two tests, d1 is the specified reduction in the mean, Z is the critical values from the Normal distribution to achieve the selected levels of significance and power, α is level of significance, and β is the power of the test. Table 1 illustrates the sample sizes required to have a reasonable chance of detecting the effect of an intervention that reduced breathlessness scores over a few days in patients

Table 1 Sample size required to detect a change in breathlessness of 25% for VAS and the numerical rating scale

<table>
<thead>
<tr>
<th></th>
<th>Visual analogue scale</th>
<th>Numerical rating scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breathlessness “right now”</td>
<td>50 (25; 13)</td>
<td>31 (3.0; 1.2)</td>
</tr>
<tr>
<td>Worst breathlessness over the past 24 hours</td>
<td>36 (51; 22)</td>
<td>14 (5.8; 1.4)</td>
</tr>
<tr>
<td>Average breathlessness over the past 24 hours</td>
<td>30 (33; 13)</td>
<td>28 (3.7; 1.4)</td>
</tr>
<tr>
<td>Bother over the past 24 hours</td>
<td>67 (36; 22)</td>
<td>38 (3.8; 1.7)</td>
</tr>
</tbody>
</table>

The BTS guidelines for the management of chronic obstructive pulmonary disease (COPD) state that use of ventilatory support or doxapram should be considered during acute exacerbations of respiratory failure in patients with arterial [H+] >55 mmol/l (pH <7.26),3 which implies that these measures should not be considered when [H+] is below this level. The paper cited to support this recommendation reported an uncontrolled prospective study of the application of guidelines including this criterion in COPD management,7 but the figure of [H+] >55 mmol/l originated from much earlier work observing that this degree of acidosis predicted increased mortality. The prospective study was not designed to test the hypothesis that only patients with [H+] >55 mmol/l should receive respiratory support, and noted, firstly, that clinical judgement led to doxapram being given at lower levels of [H+] in 10 of 37
episodes in which it was used and secondly that, on retrospective analysis, [H+] >53 nmol/l (pH <7.28) was a better predictor of mortality.” The only placebo controlled trial of doxapram for respiratory failure in COPD demonstrated improvement in blood gas parameters in patients with a mean arterial [H+] of 46 nmol/l (pH 7.34), and recent controlled trials of non-invasive ventilation have also shown benefit in subject groups with a mean [H+] below 55 nmol/l. There is a risk that strict application of the BTS guidelines may result in treatment being delayed or withheld from patients with respiratory failure and worsening acidosis on controlled oxygen therapy when [H+] has not risen to 55 nmol/l, when there is no definitive evidence that such patients cannot benefit from doxapram or ventilatory support. Further trials are clearly needed to define more precisely which patients can benefit from these treatments, but meanwhile can I suggest that this recommendation be reconsidered?

ADAM WHITTLE
Chest Heart and Stroke Scotland Research Fellow, Respiratory Medicine Unit, Western General Hospital, Edinburgh EH4 2XU, UK


AUTHOR’S REPLY Dr Whittle’s inference from the COPD guidelines was not one that we intended to imply. Lack of comment about the use of doxapram at pH levels greater than 7.26 reflects the paucity of data available and the lack of clinical agreement amongst those producing the guidelines. Usage varies substantially between hospitals and the relative position versus non-invasive ventilation is unclear.

There was agreement that respiratory failure should be actively managed according to the changing acid-base balance and that a pH of less than 7.26 should always be a cause for action. Lesser degrees of acid-base abnormality require clinical interpretation but I for action. Lesser degrees of acid-base abnormality require clinical interpretation but I.

Other 983 36.5 11.0 22.5 20.3 5.9 32.8 58.9 22.2 30.5 48.8

COPD: New Developments and Therapeutic Opportunities

A course on “COPD: New Developments and Therapeutic Opportunities”, suitable for physicians or scientists with an interest in the pharmacology and therapeutics of COPD, organised by Professor Peter Barnes will be held on 14–16 June 1999 at Imperial College School of Medicine at National Heart & Lung Institute in collaboration with Royal Brompton Hospital, Dovehouse Street, London. For further information contact the Postgraduate Education Centre, National Heart & Lung Institute, Dovehouse Street, London SW3 6LY, UK. Tel: 0171 351 8172. Fax: 0171 376 3442.

CORRECTION

Respiratory symptoms and home environment in children

In the paper entitled “Respiratory symptoms and home environment in children: a national survey” by M L Burr et al which appeared on pages 27–32 of the January 1999 issue of Thorax, the authors regret that three lines were transposed in table 2. The corrected section of this table relating to housing is shown below.

In addition, the address of Professor D P Strachan was omitted from the address panel on the first page of the paper. His address is: Department of Public Health Sciences, St George’s Hospital Medical School, London SW17 ORE, UK.
Repeatability of breathlessness measurements in cancer patients

A WILCOCK, V CROSBY, D CLARKE and A TATTERSFIELD

Thorax 1999 54: 374
doi: 10.1136/thx.54.4.374b