Clinical presentation of exclusive cystic fibrosis lung disease

Inez Bronsveld, Jan Bijman, Frauke Mekus, Manfred Ballmann, Henk J Veeze, Burkhard Tümmler

Abstract
The diagnosis of cystic fibrosis (CF) is based on the occurrence of two mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and on assays that measure the basic defect of abnormal chloride transport in the affected organs. However, in cases of atypical CF not all diagnostic tests may be positive. We present a patient with an atypical CF phenotype in whom the only presenting symptom was severe CF-like lung disease substantiated by an abnormal nasal potential difference. Genetic analysis showed that the patient was a symptomatic heterozygote, which suggests that one lesion in the CFTR gene may be sufficient to cause CF-like lung disease.

(Thorax 1999;54:278–281)

Keywords: cystic fibrosis; atypical cystic fibrosis; nasal potential difference; genetics

Typical cystic fibrosis (CF) is caused by two lesions in the cystic fibrosis transmembrane conductance regulator (CFTR) gene which give rise to a generalised exocrine disease of the respiratory, gastrointestinal, reproductive, and hepatobiliary tracts. The protein product of the CFTR gene is a chloride channel expressed in the apical membrane of epithelial cells so diagnostic tests that measure the chloride conductance in exocrine epithelia—for example, the pilocarpine iontophoresis sweat test, intestinal current measurement (ICM), and nasal potential difference (NPD)—have abnormal values in cases of typical CF. Atypical cases of CF have a different clinical presentation with pancreatic sufficiency, mild bronchitis, nasal polyposis, congenital bilateral absence of the vas deferens (CBAVD), a borderline sweat test, or ICM values which point to low residual chloride secretion in intestinal tissue either by CFTR or an alternative chloride channel. We present a case characterised exclusively by severe lung disease in whom other organs typically involved in CF were not affected and who failed to show a defect in chloride transport.

Patient history
The 34 year old patient was the third child of Caucasian first generation cousins. The first child was born preterm with meconium ileus and died at day 10. The second child died during infancy at six months and CF was suspected at necropsy. Our patient suffered from chronic nasal polyposis which had led to 13 polypectomies between the age of five and 23 years. By the age of 15 years she was referred to a chest physician because of shortness of breath during sports activity. Clubbing, subnormal lung function, and decreased exercise tolerance were noted. The diagnosis of CF was proposed because of the typical pulmonary manifestations but was discarded when normal sweat electrolyte concentrations were found. The differential diagnosis of allergy as the underlying disease was excluded by normal IgE skin prick tests and normal serum levels of specific IgE. Immotile cilia syndrome was excluded by the normal microscopic appearance of biopsy specimens of nasal cilia. Since adolescence she had been underweight (below 3rd percentile) and had recurrent lower airway infections. Over the years increased sputum production and chronic cough became a clinical problem. A lung biopsy specimen in 1984 showed a histological pattern consistent with CF (bronchiectasis with localised purulent bronchitis and surrounding fibrosis). Cultures of throat swabs or sputum were often positive for Staphylococcus aureus (>90% of samples) but never for Pseudomonas aeruginosa. However, the specific anti-P aeruginosa opfG IgG titre was positive, indicating that she had been exposed to P aeruginosa. Bronchodilators and intermittent antibiotics were prescribed but the patient generally discontinued medication after a few days, even during acute respiratory tract infections. At the age of 23 her lung function was reduced (vital capacity 1.5 l (48% predicted)), her chest radiograph had a Crispin-Norman score of 20, grade 3 (range 0–38), her height was at the 25th percentile and weight below the 3rd percentile. However, her pancreatic function was sufficient as shown by normal chymotrypsin levels in 1986, 1992, 1995, normal stool elastase levels (386 mg/g) in 1995, and by ultrasound investigation of the pancreas. She had never received pancreatic enzymes or vitamin supplements. Serum levels of vitamins (vitamin A 370 µg/l, vitamin E 11 mg/l), bilirubin and liver enzymes were always in the normal range. Moreover, in...
Table 1 Electrophysiological results for the study patient. Mean (SD) values for a control group and a group of patients with CF are given for comparison.

<table>
<thead>
<tr>
<th></th>
<th>Control group</th>
<th>Study patient</th>
<th>CF group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal potential difference (mV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baseline and APD after addition of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baseline</td>
<td>−24 (11)</td>
<td>−52</td>
<td>−45 (10)</td>
</tr>
<tr>
<td>amiloride</td>
<td>+10 (6)</td>
<td>+21</td>
<td>+21 (9)</td>
</tr>
<tr>
<td>Cl− free solution</td>
<td>−15 (10)</td>
<td>−3</td>
<td>−1 (5)</td>
</tr>
<tr>
<td>isoprenaline</td>
<td>−8 (4)</td>
<td>−4</td>
<td>−2 (3)</td>
</tr>
<tr>
<td>ATP</td>
<td>−1 (3)</td>
<td>0</td>
<td>−1 (6)</td>
</tr>
<tr>
<td>Intestinal current measurement (µA/cm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>amiloride</td>
<td>−8.7 (11)</td>
<td>−4.9</td>
<td>−8.7 (11)</td>
</tr>
<tr>
<td>carbachol</td>
<td>38.5 (23)</td>
<td>45.5</td>
<td>5.3 (10)</td>
</tr>
<tr>
<td>histamine (after DIDS incubation)</td>
<td>33.0 (26)</td>
<td>19.4</td>
<td>−5.0 (10)</td>
</tr>
</tbody>
</table>

Figure 1 Autoradiogram of genomic ApaI digestions probed with CFTR cDNA (exon 7–24). No anomalous band pattern is seen for the sample from the patient (lane 1). For comparison, lane 4 shows the probe reactive fragments from a specimen which carries a deletion in one CFTR allele. ApaI cleaved fragments were separated in a CHEF-DR™ cell at 5.6 V/cm in 1% agarose gels (0.5 TBE buffer, 10°C). Pulse times were linearly increased in two ramps from 5 to 20 s in 18 hours and from 5 to 90 s in 20 hours.

Methods

This study was approved by the medical ethical committees of the Dutch and German participating hospitals and informed consent was obtained from the patient. All chemicals were obtained from the Sigma Chemical Co, St Louis, Missouri, USA.

ANALYSIS OF THE CFTR GENE

The promoter (−3.8 to −0.3 kb) and coding regions and the exon flanking intron sequences of the CFTR gene were screened for mutations by single strand conformation polymorphism (SSCP) analysis and, in the case of the intragenic region, by subsequent appearance of non-wild type band patterns in high resolution SSCP gel, by subsequent restriction digestions of genomic DNA probed with CFTR cDNA (exon 7–24). No anomalous band pattern is seen for the sample from the patient (lane 1). For comparison, lane 4 shows the probe reactive fragments from a specimen which carries a deletion in one CFTR allele. ApaI cleaved fragments were separated in a CHEF-DR™ cell at 5.6 V/cm in 1% agarose gels (0.5 TBE buffer, 10°C). Pulse times were linearly increased in two ramps from 5 to 20 s in 18 hours and from 5 to 90 s in 20 hours.

Results

CFTR GENETICS

Despite the familial consanguinity, the patient was heterozygous at the CFTR locus which is shown by the different number of (TA)n repeats (n = 30, 34) for the microsatellite at the locus IVS17bTA and her heterozygosity for a rare CFTR mutation. She was homozygous for a rare CFTR haplotype (TG)_{17}T_{19}, M470V-T854T. The combination of the TG_{17}T_{19} repeat with the T_{19} allele and the V470 CFTR isofrom are known to decrease significantly the amount and chloride channel activity of CFTR. After all CFTR exons and flanking intron sequences and most of the promoter

Control group

n = 25

Study patient

n = 23

CF group

n = 23

Nasal potential difference (mV)

−24 (11) | −52 | −45 (10)

Intestinal current measurement (µA/cm²)

<table>
<thead>
<tr>
<th></th>
<th>n = 50</th>
<th>n = 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>amiloride</td>
<td>−8.7 (11)</td>
<td>−4.9</td>
</tr>
<tr>
<td>carbachol</td>
<td>38.5 (23)</td>
<td>45.5</td>
</tr>
<tr>
<td>histamine (after DIDS incubation)</td>
<td>33.0 (26)</td>
<td>19.4</td>
</tr>
</tbody>
</table>
area up to –4 kb had been screened by SSCP, one molecular lesion (the splice site consensus transition 1898+3 A->G) was identified. A pancreatic insufficient child with CF at our clinic is homozygous for this condition and exhibited the typical pulmonary and gastrointestinal manifestations of CF indicating that 1898+3 A->G is a CF-causing lesion. No intestinal manifestations of CF indicating that CFTR Cl– channels are present. No ATP response, which is usually indicative of the presence of alternative Cl– channels, was seen in the airway tissue.

In previous ICM studies carbachol has provoked a negative reversed Isc in rectal tissue of patients with CF, sometimes followed by a positive residual response indicating the presence of residual Cl– secretion. In our patient the ICM showed a Cl– secretory current in the normal range on addition of carbachol (fig 3). DIDS, which inhibits the alternative pathway of Ca2+ activated Cl– currents, did not influence the Cl– current, suggesting the presence of normal CFTR mediated chloride conductance in the intestine.

Discussion

The clinical and diagnostic features presented by this case are conflicting in terms of the expression of the basic defect in different tissues. In typical CF defective electrolyte transport in the sweat gland, intestinal and airway epithelium is shown by a pathological outcome of the sweat test, ICM and NPD. In our case, however, the sweat chloride concentration and ion flow in the intestine were normal while the NPD values were abnormally high. Pathologically raised NPD values have so far only been found in CF and not in any other lung disease with related clinical manifestations such as α1-antitrypsin deficiency, immotile cilia syndrome, or congenital bronchiectasis. As well as a high baseline nasal PD, the patient’s glucocortic and isoprenaline response were also in the CF range. However, they do point to the presence of little residual CFTR Cl– permeability in her respiratory epithelium. The clinical symptoms of our patient, such as progressive obstructive bronchitis and bronchiectasis, sputum production, and pathological bacterial flora, are typical of CF and she has been permanently on oxygen since the age of 30. This could explain her anorexic status since there is no sign of malabsorption or gastrointestinal disease, as confirmed by normal vitamin A and E levels, pancreatic sufficiency, and a normal ICM. This highly discordant expression of the basic defect in different tissues is described here for the first time: CFTR function was unaffected in gastrointestinal tissue whereas in airway tissue the abnormally low Cl– conductance can only be accounted for by defective epithelial Cl– transport. Other cases of CF with normal sweat test results and pulmonary disease, as described for patients carrying the A455E or 3849+10 kb C->T mutation, can clearly be diagnosed by an abnormal ICM even when there are few or no clinical signs of gastrointestinal involvement.

The CFTR gene was screened for disease causing lesions in all exons and flanking intron sequences and on one chromosome a sequence alteration in a donor splice site was found.
Exclusive cystic fibrosis lung disease

(1998+3 A→G). This sequence alteration was first described in a compound heterozygous pancreatic sufficient patient (Ferrari et al, personal communication) and was found also in a pancreatic insufficient CF patient homozygous for this condition (see above). According to CFTR mutation analysis and the family anamnesis, our patient is a carrier for one CFTR mutation and hence should not express any CF symptoms. However, she carries an unavourable combination of common intragenic polymorphisms. She is homozygous TG12T7 for the TG12 polymorphism at the intron 8 splice acceptor site, and the TG12 repeat together with the T7 stretch places the branch point nucleotide in an unfavourable position for splicing leading to 30% of exon 9 CFTR transcript which are known to be translated in CFTR proteins that do not mature.16 24 Moreover, she is homozygous for the V470 allele in exon 10. V470 CFTR proteins have a 1.7 fold decreased intrinsic chloride channel activity compared with M470 CFTR proteins.16 These predisposing polymorphisms in the intragenic background decrease the expression and function of CFTR. Yet, they are present in both rectal and nasal tissue and cannot account for the unimpaired function of CFTR in the intestine while in the nasal tissue almost complete absence of Cl− conductance was found. However, the patient’s consanguineous descent leads to a genome-wide overrepresentation of homozygous genotypes which may lead to further unfavourable combinations of factors that modify CFTR expression or lung function. As gastrointestinal disease is not present, we propose that the genetic background predisposes to severe lung disease caused by tissue specific regulatory elements which lead to the loss of CFTR function exclusively in the respiratory epithelium.

This work was supported by the Deutsche Forschungsgemeinschaft.

Clinical presentation of exclusive cystic fibrosis lung disease

Inez Bronsveld, Jan Bijman, Frauke Mekus, Manfred Ballmann, Henk J Veeze and Burkhard Tümmler

Thorax 1999 54: 278-281
doi: 10.1136/thx.54.3.278

Updated information and services can be found at:
http://thorax.bmj.com/content/54/3/278

These include:

References
This article cites 21 articles, 4 of which you can access for free at:
http://thorax.bmj.com/content/54/3/278#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Cystic fibrosis (525)
Genetic screening / counselling (88)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/