Inhibition of T cell proliferation by human alveolar macrophages

The demonstration by Upham et al that human alveolar macrophages selectively inhibit proliferation of T cells by secretion of unidentified effector molecules raises the question as to whether pathological processes in the lung characterised by extensive macrophage recruitment or activation can have a systemic effect on T cell development.

It has been shown in several studies that patients with pulmonary tuberculosis who are not infected by HIV often show a lymphopenia principally affecting the CD4+ T cells. It appears to be a transient phenomenon as the CD4+ count reverts to normal after successful therapy. A similar transient CD4+ lymphopenia has also been observed after antigenic bronchial provocation in asthmatic subjects.

It would be of great interest to determine whether this systemic phenomenon is due to the same mechanism as the one described by Upham et al, whether it accounts (at least in part) for the so-called ‘idiopathic CD4+ T lymphopenia syndrome’, and whether it affects the balance between Th1 and Th2 cells which may be critical to the pathogenesis of both asthma and tuberculosis.

JOHN M GRANGE
Imperial College School of Medicine, Dolmabahce Street, London SW3 6LY, UK

Inhibition of T cell proliferation by human alveolar macrophages

The demonstration by Upham et al that human alveolar macrophages selectively inhibit proliferation of T cells by secretion of unidentified effector molecules raises the question as to whether pathological processes in the lung characterised by extensive macrophage recruitment or activation can have a systemic effect on T cell development.

It has been shown in several studies that patients with pulmonary tuberculosis who are not infected by HIV often show a lymphopenia principally affecting the CD4+ T cells. It appears to be a transient phenomenon as the CD4+ count reverts to normal after successful therapy. A similar transient CD4+ lymphopenia has also been observed after antigenic bronchial provocation in asthmatic subjects.

It would be of great interest to determine whether this systemic phenomenon is due to the same mechanism as the one described by Upham et al, whether it accounts (at least in part) for the so-called ‘idiopathic CD4+ T lymphopenia syndrome’, and whether it affects the balance between Th1 and Th2 cells which may be critical to the pathogenesis of both asthma and tuberculosis.

JOHN M GRANGE
Imperial College School of Medicine, Dolmabahce Street, London SW3 6LY, UK

Adenosine and adenosine antagonism in asthma

I read with interest the excellent update on adenosine by Polosa and Holgate. An important use of this challenge agent is demonstrated and adenosine antagonism as a potential treatment for asthma is revisited. However, the role of adenosine as a mediator of asthma is somewhat inconsistent with several functional observations. Besides the fact that adenosine has dual effects in many systems, data are available particularly involving the pharmacology of enprofylline (3-methyl xanthine)—which suggest that the therapeutic efficacy of theophylline (1,3-dimethyl xanthine) in asthma may not reflect adenosine antagonism. This latter aspect is significant because theophylline, at therapeutic concentrations, effectively antagonises adenosine (at receptors and functionally in vivo).

Qualitatively different from theophylline, enprofylline does not antagonise the physiological/pathophysiological actions of adenosine yet enprofylline and theophylline share several pharmacological actions including cardiac stimulation, microvascular anti-exudative activity, and a range of smooth muscle relaxant effects although enprofylline is consistently about three times more potent than theophylline. Equally, enprofylline is about three times more potent than theophylline in asthma as a bronchodilator, as an inhibitor of histamine-induced bronchoconstriction, as an inhibitory effect on gastric secretory effects. This distinct human pharmacology is evidence for the clinically effective adenosine antagonism of theophylline and indicates that enprofylline tonically suppresses volume and acidity of gastric secretion, natriuresis and fatty acid release, etc.

One might therefore conclude that adenosine antagonism should probably be avoided in asthma therapy because it may be associated with less desirable excitatory extrapulmonary effects. Antagonism of A1 adenosine receptors by enprofylline may explain the “adenosine hypothesis”.

By inferring this, Polosa and Holgate lend greater weight to in vitro observations that disagree with the anti-asthma potency ratio between enprofylline and theophylline that may require 300 μM drug concentrations for effective function (inhibiting mast cell release) than, for instance, the work by Clarke et al which showed that theophylline, but not enprofylline, protects against adenosine induced obstruction in asthma (see also references 18 and 21 in the review by Polosa and Holgate).

If the clinical efficacy of the xanthines in asthma cannot be explained by adenosine antagonism, phosphodiesterase inhibition may offer an alternative explanation but, unfortunately, there are also doubts about this—hence the widely promoted non-xanthine phosphodiesterase IV inhibitors cannot rely on theophylline for any predictable clinical efficacy. Perhaps both adenosine antagonism and phosphodiesterase inhibition are examples of how theoretically attractive mechanisms may prevent unbiased exploration of truly important in vivo modes of action of anti-asthma drugs.

Incidentally, enprofylline was discovered by unexpected observations in complex biosystems. Such exploratory in vivo work, if allowed, will continue to be a source of novel drugs; when successful, one should not be surprised to learn that the discovered class of drug was not predicted by reductionist research paradigms. The new efficacious compounds may thus unravel novel mechanisms—for example, omeprazole and the acid pump—or, as with the experimental drug enprofylline, the new properties will surely question the therapeutic relevance of a widely held mechanism.

CARL PERSSON
Department of Clinical Pharmacology, University Hospital of Lund, S-22185 Lund, Sweden


Reasonably digestible reviews of recent clinical trials in the management of lung cancer are rare and, in general terms, this 11 chapter book is welcome. The emphasis here is on the use of chemotherapy and radiotherapy in the management of lung cancer, with eight of the 11 chapters considering these aspects, and the other three are concerned with chemotherapy, palliative medicine, and molecular biology.

Nine of the 11 authors are from the USA. The chapters take the form of a traditional review and are reasonably well set out with an average of 50 references for each topic. The strengths of the book are the comprehensive assessment of drug therapies, with separate chapters on paclitaxel/carboplatin, gemcitabine, and docetaxel in non-small cell lung cancer, and a separate chapter on novel drugs for small cell lung cancer, including the topoisomerase-I inhibitors, carboplatin, and the taxanes.

Sadly, the volume lacks an adequate introduction by the Editor, which would have been useful if it had been able to point out the “major messages” from each of the chapters—for example, stressing the importance of the recent meta-analysis of trials of prophylactic cranial irradiation in responding small cell lung cancer, or the superiority of standard nonrandomised regimens over dose low dose etoposide in this disease. Surgery gets no mention at all, and nor does endobronchial therapy. This is a pity since there have been major advances in our understanding of the role of endobronchial treatments, and the literature, particularly that relating to brachytherapy, is badly in need of review. Likewise, I found the chapter on palliative medicine disappointing with no consideration of psychosocial problems or some important major physical symptoms such as cough and pleural disease, and a misplaced discussion here of the meta-analysis of chemotherapy in newly diagnosed lung cancer. The best chapter, in my view, was that by Wagner on radiation therapy in small cell lung cancer which was a well set out discussion of the attempts that have been made to optimise local control by altering the timing and fractionation of thoracic radiotherapy, together with an up to date discussion on prophylactic cranial irradiation. The book is just about up to date enough to include the results of the important MRC study on continuous hyperfractionated accelerated radiotherapy for non-small cell disease (CHART), which must now be considered as one of the few studies on radiotherapy recently to have shown an improvement in survival compared with local control.

This book will not appeal to the non-specialist, though it would be a useful starting point for doctors or groups who want an up to date background account as a preliminary to designing their own studies or choosing a pattern of management for their patients. Inevitably, in a fast moving field such as the assessment of new therapies for lung cancer, a book like this will rapidly become out of date and, with guidelines, I would estimate that “an update of this update” will probably be needed within a couple of years.—MFM


When asked to review this book last year I devised my own “sightindex” to assess its worth to me as a respiratory physician with the responsibility for a tuberculosis service. First a sit down to get acquainted with each other. It is big, attractive, and laid out in easy to grasp, but somewhat let down by the index. The first sections on history and epidemiology are as interesting as a British Medical Journal Christmas issue, but potentially more expensive to read in the bath—I enjoyed them. The 28 colour photos are cheerful and useful, except three brown-on-brown peroxidase stains which make the eyelids droop, presumably the reason why photograph 23 of the eye is presented upside down. During the year it sat on my shelf four colleagues borrowed the book and said it was very useful. My personal “sightindex” was 10, nearly equalling my most popular text book. I scored the usefulness of each sightation on a scale from O (no value) to 3 (excellent). I searched for M szulgai (useful about soft tissue infections and antibiotic sensitivity but little regarding lung infection, score 2/3), how to give BCG in the thigh (nothing, 0/3), management of multi-drug resistant tuberculosis (excellent, 3/3), renal tuberculosis (excellent review and helpful discussion of the role of thiazides and oral steroids, 3/3) M box (good review and references, 3/3); management of BCG complications (subcutaneous abscess not mentioned, vague advice on therapy, 0/3), medical and surgical management of tuberculous empyema (most useful, 3/3); TB in prisoners—sorry—professional institutions or “tax supported exposure chambers for tuberculosis” (useful but review limited to problem in USA, some unrealistic recommendations, 2/3); advice on standard drug therapy (useful summary of ATS recommendations but not of drug dosages, 2/3) and directly observed therapy (again no summary of intermittent dosages, 2/3).

So the borrow index was 4, my “sightindex” was 10, and usefulness score 66%. That’s pretty good (BCG apart), and I am very pleased to have it available. So should you, if you have an interest in or responsibility for a tuberculosis service.—JTM

BOOK REVIEWS

New Drugs for Asthma

A two-day conference on “New Drugs for Asthma” will be held at the National Heart and Lung Institute, Imperial College School of Medicine, London on 16 and 17 June 1998. For further details please contact Caroline Elliott at IBC UK Conferences Ltd, Biomedical Division, Gilmoora House, 57–61 Mor- timer Street, London W1N 8JX, UK. Tel: +44 (0)171 453 2701; Fax: +44 (0)171 631 3214; email caroline.elliott@ibcuk.co.uk

NOTICE


AUTHORS’ REPLY

We read with interest the letter from Professor Persson but we remain somewhat confused about the point or points he raises. The review we wrote was intended to draw attention to adenosine bronchoprotective properties of adenosine A1 and A2 receptors as a potential new marker for airway inflammation in asthma, which may be useful both clinically and to assess the action of anti-inflammatory drugs such as topical corticosteroids.1 Because it was originally thought that enprofylline was free of A2 receptor antagonist properties it was argued that adverse effects of xanthines operating through this receptor could be avoided.2 It was also stated that, because enprofylline did have pharmacological and therapeutic actions in asthma, it was unlikely that adenosine antagonism could be involved. As pointed out in our review, it is now known that there exist two types of adenosine A1 receptor designated A1*1 and A1*2.1 While enprofylline has little or no effect against A1 receptors, it is a selective, albeit weak, antagonist at the A2 receptor—the adenosine receptor subtype found both on canine and human2 mast cells. Thus, if adenosine is released in pharmacologically active concentrations in asthmatic airways, for which there is good evidence, then enhancement of mast cell mediator release via A2 receptors is a probable scenario. As a consequence, enprofylline could have produced at least some of its therapeutic effect in asthma by inhibiting A1 receptor mediated mast cell releasability. This may or may not have had implications for the clinical efficacy of enprofylline, which is only a weak A1 antagonist, but the A2 receptor does present a potential new therapeutic target for asthma against which new drugs might be developed.3

STEPHEN T HOLGATE
Department of Immunopharmacology,
Southampton General Hospital,
Tremena Road,
Southampton SO9 4YX, UK

4 Persson CGA. In viva veritas. The continuing importance of discoveries in complex biosys-

Downloaded from http://thorax.bmj.com/ on June 22, 2017 - Published by group.bmj.com
Inhibition of T cell proliferation by human alveolar macrophages

JOHN M GRANGE

Thorax 1998 53: 437
doi: 10.1136/thx.53.5.437

Updated information and services can be found at:
http://thorax.bmj.com/content/53/5/437.1

These include:

References
This article cites 10 articles, 2 of which you can access for free at:
http://thorax.bmj.com/content/53/5/437.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/