Management of childhood croup

William B G Macdonald, Gary C Geelhoed

Croup (laryngotracheobronchitis) is a common childhood illness with a peak incidence of 60 per 1000 child-years in those aged between one and two years. More severe cases of croup are traditionally observed in hospital in order to manage potentially life threatening airway obstruction. Prior to the introduction of steroid therapy, intubation was required in approximately 2% of these hospitalised children.1,4

When a previously well child presents with hoarseness, barking cough and stridor, a diagnosis of croup is relatively straightforward. Children with a longstanding history of stridor or those under four months of age should be carefully evaluated for anatomical airway obstruction, such as laryngeal cyst or papillomatosis, vocal cord paresis, extrinsic airway compression (e.g. vascular ring), or laryngotracheal stenosis. In children with high fevers and/or a toxic appearance, consideration should be given to more serious infections such as bacterial tracheitis, retropharyngeal abscess, or epiglottitis. However, routine immunisation against Haemophilus influenzae type b has dramatically reduced the incidence of invasive H influenzae type b infection, so that epiglottitis is now a rare diagnosis in completely immunised children.5

Croup has traditionally been divided into viral and spasmodic types. In our experience, however, such a distinction is often not possible; approximately 40% of children admitted to our institution have features to suggest both viral (fever, rhinorrhoea) and spasmodic (atopy, multiple previous episodes) aetiologies and we would concur with Skolnik that the two conditions lie on a single spectrum of illness.6

Traditional advice regarding management of croup has included use of antipyretics, maintenance of a reasonable fluid intake, and humidified air – either in the form of warm steam in the home setting or cool mist in hospital, the latter usually delivered through a mist tent or “croupette”. Most young children placed in mist tents find the experience frightening and careful observation of the child is rendered more difficult. This advice regarding humidified air originated in an era when many children who died from upper airway obstruction could be shown to have bacterial infection (either primary or secondary) and little other definitive therapy was possible, it being argued that humidification would be useful to loosen airway secretions. In fact, the only randomised trial of humidification in croup ever undertaken failed to show any benefit, although the number of patients in this study was very small.7 In an animal model of croup, in which airway oedema was induced by inflicting a mild thermal injury, humidified air was shown to result in greater airway resistance than dry air, while air temperature was shown to have little effect.8 Nebulised saline has not been shown to result in any sustained improvement in clinical status when used as a placebo treatment in trials involving nebulised adrenaline or budesonide.9,10 The use of humidified air was abandoned in most Australian children’s hospitals more than a decade ago, without any observable deterioration in clinically important parameters such as the proportion of children requiring admission to intensive care or intubation or the length of hospital stay.4 There seems little reason to discourage the use of bathroom steam for children with croup in the home setting, particularly as the reduction in anxiety which both child and parent experience may be clinically useful, but it should be recognised that this is almost certainly a placebo effect and there is no evidence to support the continuing use of mist therapy in inpatient environments.

Corticosteroids were first advocated in croup in the 1950s, but a succession of clinical trials conducted over the ensuing 30 years failed to establish any clear benefit from their use.11-20 In 1989 Kairys et al published a meta-analysis of the nine methodologically satisfactory studies to date which had examined the use of steroid therapy in croup and concluded that there was a benefit from its use with a suggestion of a dose-response effect.21 Six placebo controlled studies looking at the effect of steroids in children admitted to hospital with croup have since been published and all have shown a clinically useful benefit, with improvements in clinical parameters,10,22-26 duration of hospital stay,24,25,26 and requirement for “rescue” medication in the form of nebulised adrenaline.18 None of these trials had sufficient statistical power to demonstrate a reduction in the proportion of children who died or required endotracheal intubation, both now comparatively rare outcomes. Steroids have, however, been shown to markedly reduce post-extubation stridor in children with severe croup who required endotracheal intubation.27

Various steroid agents and routes of administration have been used in croup, and all have shown a benefit, so clinicians now have a range of therapeutic options from which to choose. Dexamethasone, a fluorinated derivative of prednisolone, has been the most extensively studied drug. Earlier studies employed large doses (e.g. 0.6 mg/kg) of parenteral dexamethasone, but more recent work from our own institution has shown that the oral preparation works well and that much smaller doses (e.g. 0.15 mg/kg) are as effective as larger doses.28 Prednisolone has not been as widely studied but there seems little reason to believe that equivalent doses (e.g. 1 mg/kg) would not be useful. These smaller doses are consistent with single steroid doses commonly used in asthma. A single dose is usually adequate for mild to moderate croup and clinical relapse is uncommon once children have improved to a point where they are ready for discharge from hospital, although the dose can be repeated 12-24 hours later if necessary. Prolonged courses of steroids are unnecessary, except perhaps in children with severe croup who are being managed in intensive care settings.

More recently, nebulised budesonide has been shown to be useful in mild to moderate croup. All studies examining the effect of budesonide have used a fixed dose of 2 mg. Although the initial study by Husby et al used two doses, they were able to demonstrate a clinical improvement prior to administration of the second dose.74 Several studies have since documented the efficacy of a single dose of budesonide in mild to moderate croup.10,24-26,32 Only one study has compared nebulised budesonide with systemic steroids and no significant difference in efficacy was seen between the two treatments.10 Another study examined whether nebulised budesonide and systemic steroids were synergistic and showed that budesonide exerted a modest additive effect to oral dexamethasone (0.6 mg/kg), although
there was no reduction in admissions to hospital. A recent study which examined the effects of nebulised dexamethasone in large doses in hospitalised children showed a clinical improvement in treated children compared with controls at four hours, but no reduction in the length of time in hospital.

A remarkable feature of many of the trials concerning use of steroids in children with croup has been the rapid onset of a therapeutic effect, irrespective of the route of administration. Most children with croup given steroids show a prompt (within 1–2 hours) and sustained improvement, and it is now our practice to observe children with moderate croup in the emergency department for a couple of hours following steroid administration and to allow them home if there has been an obvious improvement. The rapid onset of action seems unlikely to be on the basis of alterations in protein transcription and it is probable that steroids have some other important effect in croup.

Although steroid administration results in a prompt improvement in clinical status, there is no significant reduction in duration of symptoms, particularly the viral symptoms of cough, rhinorrhea, and sore throat which frequently accompany viral croup. Nonetheless, both doctors and parents consistently rate steroid treated children as being less unwell than placebo treated controls, and there is less requirement for ongoing medical care following discharge home.

It appears, then, that moderate doses of corticosteroids given by a variety of routes are beneficial in children admitted to hospital with croup. Like asthma, increasing the steroid dose beyond a certain “threshold” level is unlikely to result in additional benefit, and the doses of steroids required in croup are very similar to those used in asthma. We prefer oral dexamethasone which is both cheap and well tolerated by children. It is important to remember that the oral bioavailability of dexamethasone sodium phosphate (the usual parenteral preparation) may be poor and care needs to be taken to ensure that the correct preparation is used. Budesonide is more expensive and requires the presence of a nebuliser. In addition, nebuliser therapy is usually very distressing for young children and is contrary to the philosophy of “minimal handling” in children with upper airway obstruction. The amount of systemically absorbed steroid is bound to be less following a budesonide nebulisation compared with an oral or parenteral dose of dexamethasone, but this is probably of negligible clinical importance for a single dose treatment that is administered only occasionally.

Both oral and parenteral dexamethasone and nebulised budesonide have also been shown to be useful in children with croup too mild to warrant hospital admission. While steroids did not shorten the duration of illness in these children, there was a significant reduction in symptom severity and in the proportion of children whose parents were concerned enough to return them for medical consultation. In the absence of more important outcome measures, whether such children ought to be treated with steroids remains a matter of physician and patient preference. We believe that the potential for adverse effects following a single dose of steroid is extremely low and that the clinical improvement seen in steroid-treated children justifies its use, even in outpatient settings.

Nebulised adrenaline has an established place in severe croup. It has been shown to result in rapid clinical improvement, although the effect may last for only 2–3 hours. Initial studies employed racemic mixtures because of fears regarding cardiotoxicity, but a recent trial has shown the L-isomer (the usual form available for resuscitation) to be both safe and effective. The doses required (e.g. 4 mg) are substantial and tachycardia and circumoral pallor are usual following administration. The introduction of routine steroid use in our institution has virtually eliminated the need for repeated doses of nebulised adrenaline in children with croup. It has been traditional to recommend that, in view of its short duration of action, children treated with nebulised adrenaline should all be admitted to hospital for observation. Three recent North American studies have shown that children treated with nebulised adrenaline could safely be discharged home if they were free of symptoms 2–3 hours after treatment, although it is noteworthy that the children in these studies also received steroids on a routinebasis. More recently, an Australian study has shown that nebulised adrenaline alone was as efficacious as nebulised budesonide in children admitted to hospital with croup, although the results of this study would at least need to be duplicated before adrenaline could be advocated as an alternative monotherapy to steroids for children with croup.

Endotracheal intubation for severe croup is still a life saving measure but is almost never required when effective doses of steroids and adrenaline have been administered. In our institution the only children intubated for croup were those admitted to hospital for observation. Three recent North American studies have shown that children treated with nebulised adrenaline could safely be discharged home if they were free of symptoms 2–3 hours after treatment, although it is noteworthy that the children in these studies also received steroids on a routine basis. More recently, an Australian study has shown that nebulised adrenaline alone was as efficacious as nebulised budesonide in children admitted to hospital with croup, although the results of this study would at least need to be duplicated before adrenaline could be advocated as an alternative monotherapy to steroids for children with croup.
28 Geelhoed GC, Macdonald WBG. Oral dexamethasone in the treatment of croup: 0.15 mg/kg versus 0.3 mg/kg versus 0.6 mg/kg. Pediatr Pulmonol 1995;20:362–6.
Management of childhood croup.

W B Macdonald and G C Geelhoed

Thorax 1997 52: 757-759
doi: 10.1136/thx.52.9.757

Updated information and services can be found at:
http://thorax.bmj.com/content/52/9/757.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/