Diaphragm thickness and inspiratory strength in patients with Duchenne muscular dystrophy

P F De Bruin, J Ueki, A Bush, Y Khan, A Watson, N B Pride

Abstract

Background – There is little information on the morphometric characteristics of the diaphragm in patients with Duchenne muscular dystrophy.

Methods – The thickness of the diaphragm was measured at the zone of apposition using B mode ultrasonography in 10 boys with Duchenne muscular dystrophy of mean (SD) age 10.3 (1.3) years and 12 normal controls of mean (SD) age 11.3 (2.0) years during relaxation (DiTrelax) and during maximum effort inspiratory manoeuvres (DiTPimax) at functional residual capacity.

Results – DiTrelax was greater in the patients with Duchenne muscular dystrophy (1.74 (0.21) mm) than in controls (1.48 (0.20) mm), mean difference (95% CI) 0.26 (0.08 to 0.44), despite considerable impairment of maximum effort inspiratory mouth pressure (Pmax) (patients with Duchenne muscular dystrophy –37 (8) cm H2O, controls –80 (33) cm H2O), mean difference (95% CI) 43 (65 to 20). During a Pmax manoeuvre, compared with measurements taken during relaxation, the diaphragm thinned 1.6 times in patients with Duchenne muscular dystrophy and 2.3 times in controls (DiTPimax 2.62 (0.7) mm and 3.5 (0.85) mm, respectively), mean difference (95% CI) –0.88 (–1.58 to –0.18).

Conclusions – Resting diaphragm thickness is increased in young patients with Duchenne muscular dystrophy with impaired respiratory muscle force. This finding could be analogous to the pseudohypertrophy that is observed in some limb muscle groups.

Keywords: diaphragm thickness, inspiratory muscle strength, ultrasonography.

Ventilatory failure is the commonest cause of death in Duchenne muscular dystrophy.1 Progressive respiratory muscle weakness starts early2 but, because hypercapnia is usually preterminal, it has been suggested that the diaphragm might be selectively spared until a late phase of the disease.3

Ultrasoundography has proved useful for the study of anatomical characteristics of many muscle groups.4 Recently, high resolution ultrasound scanning has been used to assess diaphragm thickness during tidal breathing and during relaxation in normal subjects.56 Using B mode ultrasonography we have imaged the costal portion of the diaphragm both at rest and during maximum voluntary contractions in normal subjects.7 In this paper we have made ultrasonographic measurements of diaphragm thickness in young patients with Duchenne muscular dystrophy and age matched normal boys.

Methods

SUBJECTS

Ten boys with Duchenne muscular dystrophy (mean age 10.3, range 7–12 years, mean body weight 103.4% of ideal, mean height 97.3% of predicted values) who regularly attended the Hammersmith Hospital Muscle Clinic took part in the study. The upper age limit was set on the basis of preliminary ultrasound studies carried out in four boys aged 14–17 years with Duchenne muscular dystrophy which allowed no clear visualisation of the diaphragm (see discussion). All patients had progressive, predominantly proximal, muscular weakness without sensory abnormalities which had developed before the age of five and enlarged calves or Achilles tendon contractures, or both. Two boys were confined to a wheel chair. They all had serum creatine kinase levels, electromyographic and muscle biopsy findings consistent with the diagnosis of Duchenne muscular dystrophy, and had no respiratory symptoms. Twelve normal boys (mean age 11.3, range 6–12 years, mean body weight 103.0% of ideal, mean height 98.6% of predicted values) were studied as controls.

MEASUREMENTS

Standing height was recorded without shoes; in three boys with Duchenne muscular dystrophy it was estimated from arm span. Body weight was recorded with indoor clothes. Results were compared with values derived from the weight-for-age and height-for-age curves from the National Center for Health Statistics and Center for Disease Control and expressed as a percentage of the median for the reference population using Epi Info, version 5. Forced expiratory volume in one second (FEV1), forced
Figure 1 Ultrasonograms of the right hemidiaphragm at the apposition zone during relaxation at functional residual capacity in (A) a 13 year old normal boy and (B) a 10 year old boy with Duchenne muscular dystrophy. Arrows indicate the outer edges of the peritoneal (left) and pleural (right) membranes lining the diaphragm. There is increased echogenicity of the structures of the intercostal space overlying the costal diaphragm.

Diaphragm thickness and inspiratory strength in patients with Duchenne muscular dystrophy

vital capacity (FVC), and peak expiratory flow (PEF) were recorded using a Fukuda Sangyo spiro-analyser (ST250). Predicted values were derived from Cotes.8

Real-time movement of the diaphragm was recorded by B mode ultrasonography. A 7.5 MHz ultrasound linear probe (PLE 705S Toshiba Medical System) was held perpendicular to the chest wall in the ninth or tenth right intercostal space between the antero- and mid-axillary lines. If the angle of incidence was changed significantly by movement of the transducer head the returning ultrasound signal of the diaphragm became distorted or was lost altogether, as reported previously.57 The diaphragm was observed bounded by two clear outer parallel lines corresponding to the pleural and peritoneal membranes with an irregular bright layer of connective tissue and vessels within the muscle layer (fig 1). Diaphragm thickness was measured from the middle of the pleural to the middle of the peritoneal line. The shortest distance that could be resolved between the two lines using this system was 0.3 mm, considerably less than the thickness of the normal relaxed diaphragm. Measurements of thickness were made to the nearest 0.1 mm with calipers. On each ultrasound image two measurements of thickness were made by a single experienced observer at 0.5–2.0 cm below the costophrenic sinus and the results were averaged.

Initially three separate measurements of resting diaphragm thickness at FRC were taken while the subject was sitting comfortably, wearing a noseclip and breathing through a conventional mouthpiece, and the mean value (DiTrelax) of the measurements made on the three ultrasound images was used for analysis. In a set of six measurements the thickness was very consistent; in 19 of the boys the maximum difference was 0.1 mm or less and in the remaining three boys it was 0.2 mm. The subject was then asked to perform a maximum effort inspiratory manoeuvre against a closed airway at FRC for two seconds while the diaphragm thickness was assessed by ultrasonography. The pressure generated at the mouthpiece was recorded using a variable inductance differential pressure transducer (HP 267B) with a small internal volume and linear response over the range of 200 to −200 cm H2O. A small leak was introduced into the system to ensure glottal patency and to avoid the use of cheek muscles. The procedure was repeated at least three times. Maximum effort inspiratory mouth pressure (Pimax) was taken as the most negative pressure sustained for at least one second and the thickness of the diaphragm on the ultrasound image obtained during this manoeuvre (DiTPmax) was selected for analysis. The increase in diaphragm thickness during this maximum effort inspiratory manoeuvre was calculated as the thickening ratio (TRDi):

\[
\text{TRDi} = \frac{\text{DiTPmax} - \text{DiTrelax}}{\text{DiTrelax}}
\]

Maximum effort inspiratory mouth pressure (Pimax) was measured near TLC and the best of three technically satisfactory manoeuvres sustained for at least one second was selected for analysis. Normal values for mouth pressures were taken from Wilson and coworkers.9

Written informed consent was obtained in all cases and the protocol was approved by the local research ethics committee.

ANALYSIS OF DATA

Spearman rank correlation coefficients (\(r_s\)) were used to define correlations. The magnitude of the correlations between Pimax and age, body weight, DiTrelax, and TRDi and between DiTrelax and age, height, and body weight was assessed by linear regression analysis. Changes in diaphragm thickness and maximum inspiratory and expiratory mouth pressures were compared by the t test; mean values are given with 95% confidence intervals (95% CI). Group results are expressed as mean (SD) values.
De Bruin, Ueki, Bush, Khan, Watson, Pride

<table>
<thead>
<tr>
<th></th>
<th>DMD (n = 10)</th>
<th>Normal (n = 12)</th>
<th>Mean difference</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pmax (cm H\textsubscript{2}O)</td>
<td>−37 (8)</td>
<td>−80 (33)</td>
<td>43 (65 to 20)</td>
<td><0.001</td>
</tr>
<tr>
<td>Pmax (% predicted)</td>
<td>58.0 (17.4)</td>
<td>107.2 (37.9)</td>
<td>−49.2 (−76 to −22)</td>
<td>0.001</td>
</tr>
<tr>
<td>DiTPmax (mm)</td>
<td>1.74 (0.21)</td>
<td>1.48 (0.20)</td>
<td>0.26 (0.08 to 0.44)</td>
<td>0.007</td>
</tr>
<tr>
<td>TRDs</td>
<td>1.6 (0.5)</td>
<td>2.3 (0.4)</td>
<td>−0.7 (−1.1 to −0.30)</td>
<td>0.001</td>
</tr>
<tr>
<td>Pmax (cm H\textsubscript{2}O)</td>
<td>41 (12)</td>
<td>94 (49)</td>
<td>−53 (−90 to −16)</td>
<td>0.007</td>
</tr>
<tr>
<td>Pmax (% predicted)</td>
<td>43.5 (13.7)</td>
<td>95.1 (44.0)</td>
<td>−51.5 (−85.5 to −17.5)</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Pmax = maximum effort inspiratory mouth pressure; DiTPmax = diaphragm muscle thickness during P\textsubscript{max} manoeuvre; TRDs = diaphragm thinning ratio; Pmax = maximum effort inspiratory pressure.

* Eight subjects.

Results

Mean (SD) FEV\textsubscript{1} (1.45 (0.27) l; 77.0 (14.8)% predicted), FVC (1.52 (0.29) l; 65.8 (12.0)% predicted), and PEF (2.66 (0.66) l/s; 55.7 (12.8)% predicted) were all significantly reduced in boys with Duchenne muscular dystrophy compared with normal boys (p<0.025 for all comparisons). FEV\textsubscript{1}/FVC\% was significantly higher in boys with Duchenne muscular dystrophy (95.8 (4.9)%) than in normal boys (89.3 (5.4)%; p=0.001).

Pmax was less negative in patients with Duchenne muscular dystrophy (−37 (8) cm H\textsubscript{2}O) than in controls (−80 (33) cm H\textsubscript{2}O); mean difference (95% CI) 43 (65 to 20), p<0.001 (table 1). Significant negative correlations were found between Pmax and age (r\textsubscript{p} = 0.431; p = 0.02) and Pmax and body weight (r\textsubscript{p} = 0.486; p = 0.018) in the control group. Pmax was lower in patients with Duchenne muscular dystrophy (41 (12) cm H\textsubscript{2}O) than in control subjects (94 (49) cm H\textsubscript{2}O), mean difference (95% CI) −53 (−90 to −16), p = 0.007.

Despite reduced inspiratory force, patients with Duchenne muscular dystrophy showed a greater mean DiTPmax (1.74 (0.21) mm) than controls (1.48 (0.20) mm, mean difference (95% CI) 0.26 (0.08 to 0.44), p = 0.007, (table 1; fig 2). During maximum effort inspiratory manoeuvres at FRC there was an average thickening of the diaphragm of 1.6 times in patients with Duchenne muscular dystrophy and 2.3 times in controls compared with measurements taken during relaxation at a similar lung volume (mean DiTPmax 2.62 (0.70) mm and 3.5 (0.85) mm, respectively, mean difference (95% CI) −0.88 (−1.58 to −0.18), p = 0.017). DiTPmax showed a significant positive correlation with age (r\textsubscript{p} = 0.378; p = 0.035) and body weight (r\textsubscript{p} = 0.655; p = 0.001) and a negative correlation with Pmax (r\textsubscript{p} = 0.483; p = 0.020) in normal subjects but not in patients with Duchenne muscular dystrophy. Thickening of the diaphragm (TRD\textsubscript{i}) was significantly negatively correlated to Pmax only in the normal group (r\textsubscript{p} = 0.338; p = 0.047).

Discussion

These results show that resting diaphragm muscle thickness (DiTPmax) is increased in patients with Duchenne muscular dystrophy below the age of 12 years with significant reductions in spirometric measurements and maximum effort mouth pressures.

In preliminary studies using ultrasonography carried out in four patients with Duchenne muscular dystrophy older than 14 years echogenicity of the overlying intercostal muscles was increased and the pleural and peritoneal surfaces of the diaphragm were poorly defined so that we could not obtain reliable thickness measurements. In these four patients diaphragm echogenicity was increased, resembling the bright and speckled echo pattern found in limb muscles in patients with Duchenne muscular dystrophy which has been attributed to deposition of adipose and connective tissue.10,11

Pmax was considerably impaired in the boys with Duchenne muscular dystrophy, supporting previous reports of an early involvement of the respiratory muscles in this illness.12 Although Pmax assesses the overall force produced by the inspiratory muscles, maximum activation of the diaphragm is usually achieved with this manoeuvre, at least in normal subjects.12 Despite the impairment of Pmax, DiTPmax was significantly greater in the patients with Duchenne muscular dystrophy (1.74 (0.21) mm) than in the controls (1.48 (0.20) mm). In normal boys the mean DiTPmax was significantly thinner than was found in our earlier study10 of 13 normal adult men of average age 37 years (1.68 (0.21) mm, mean difference (95% CI) −0.2 (−0.34 to −0.03), p = 0.023)
Diaphragm thickness and inspiratory strength in patients with Duchenne muscular dystrophy

PFDB was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq of Brazil and JU by the Glaxo International Scholarship Charitable Fund. The authors are grateful to Professor V Dubowitz for access to patients under his care, to the staff and boys of the Burlington Danes School for allowing them to study control subjects, and to Dr A Manzur for his help and support.

To our knowledge, no other studies of diaphragm thickness in patients with Duchenne muscular dystrophy have been published. Increased size of the calves and certain other limb muscle groups, also known as pseudo-hypertrophy, is a well known feature of Duchenne muscular dystrophy. Pseudohypertrophy is progressive in the early stages of the disease but most of the muscles eventually decrease in size, except for the gastrocnemius and, to a lesser extent, the quadriceps and deltoids. The enlarged muscles are less strong and more hypotonic than healthy muscles of the same size. Infiltration of connective tissue and deposition of fat appears to be the cause for the increased size of calf muscles but these changes are not closely related to age or severity of disease. Similar changes have been found in intercostal muscle biopsy specimens from four patients with Duchenne muscular dystrophy but, unfortunately, no studies of diaphragm muscle composition in Duchenne muscular dystrophy are available.

We conclude that diaphragm thickness is increased in young patients with Duchenne muscular dystrophy with impaired respiratory muscle force. This finding may be analogous to the pseudohypertrophy that occurs in some limb muscles during the course of this disease.

Diaphragm thickness and inspiratory strength in patients with Duchenne muscular dystrophy.

P F De Bruin, J Ueki, A Bush, Y Khan, A Watson and N B Pride

Thorax 1997 52: 472-475
doi: 10.1136/thx.52.5.472

Updated information and services can be found at:
http://thorax.bmj.com/content/52/5/472

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Muscle disease (36)
- Neuromuscular disease (86)
- Radiology (diagnostics) (812)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/