Inhibition of allergen-induced airway obstruction and leukotriene generation in atopic asthmatic subjects by the leukotriene biosynthesis inhibitor BAYx 1005

Barbro Dahleén, Maria Kumlin, Elisabeth Ihre, Olle Zetterström, Sven-Erik Dahleén

Abstract

Background — Leukotriene receptor antagonists significantly blunt allergen-induced bronchoconstriction in asthmatic subjects. Inhibitors of leukotriene synthesis should theoretically provide similar protection, but conflicting results have been obtained when synthesis inhibitors have been tested in allergen challenge. BAYx 1005, a new inhibitor of leukotriene synthesis, was therefore evaluated in an allergen bronchoprovocation study.

Methods — Ten men with mild allergic asthma and bronchial hyperresponsiveness to histamine were recruited. On two different occasions each subject inhaled a single dose of allergen, previously determined to cause at least a 20% fall in forced expiratory volume in one second (FEV1) four hours after ingestion of 750 mg BAYx 1005 or placebo in a double blind crossover design. Urinary excretion of leukotriene E4 was measured before and during the challenges.

Results — The mean (SE) maximal fall in FEV1 was 7.1 (1.7)% after BAYx 1005 and 21.0 (3.0)% after placebo (p<0.001). The mean difference between treatments was 13.9 (95% CI 7.0 to 20.8) for the maximal fall in FEV1. All subjects were protected by BAYx 1005, the mean inhibition of the fall in FEV1, being 70.0 (7.0)%.

Conclusions — These results indicate that BAYx 1005 is a potent inhibitor of allergen-provoked leukotriene synthesis in asthmatic subjects and lend further support to the suggestion that leukotrienes are important mediators of allergen-induced bronchoconstriction.

Keywords: asthma, BAYx 1005, leukotriene synthesis inhibition, allergens.
Table 1 Subject characteristics

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age (years)</th>
<th>FEV₁ (% pred)</th>
<th>Histamine PD₂₀ (µg)</th>
<th>Allergen</th>
<th>Dose (SQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46</td>
<td>76</td>
<td>77</td>
<td>Dog</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>93</td>
<td>29</td>
<td>Grass</td>
<td>710</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>106</td>
<td>220</td>
<td>Cat</td>
<td>210</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>100</td>
<td>200</td>
<td>Cat</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>84</td>
<td>10</td>
<td>Dog</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>33</td>
<td>88</td>
<td>60</td>
<td>Cat</td>
<td>710</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>79</td>
<td>160</td>
<td>Cat</td>
<td>213</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>80</td>
<td>13</td>
<td>Dog</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>87</td>
<td>415</td>
<td>Cat</td>
<td>710</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>97</td>
<td>128</td>
<td>Cat</td>
<td>923</td>
</tr>
</tbody>
</table>

Mean 28 89 88

Range 19–46 76–106 10–940

1 Dose used during the blinded sessions (see methods)

4 Geometric mean.

the allergens used for provocation. Criteria for inclusion in the study included forced expiratory volume in one second (FEV₁) of >75% predicted and bronchial hyperresponsiveness to histamine, defined as a provocative dose causing a 20% fall in FEV₁ (PD₂₀) of <1210 µg measured as previously described. The study was approved by the local ethics committee and the Swedish Medical Products Agency (Läkemedelsverket). The patients gave informed consent.

STUDY DESIGN

All patients first underwent a screening allergen test to establish their current sensitivity to allergen. The PD₂₀ was determined by linear interpolation from the relation between cumulative dose of inhaled allergen and percentage change in FEV₁. Within six months of the screening challenge (mean interval 120 days, range 32–180) the double blind, placebo controlled, crossover drug trial was started. On two separate days the patients received either 750 mg BAYx 1005 or placebo four hours before allergen challenge. Patients reported fasting to the clinic at the same time of the day (07.30 hours) and ingested the tablets under supervision at about 08.00 hours. Breakfast was given two hours later. The dose of BAYx 1005 used was the highest that had been cleared for human studies at the time the study was performed. The time for predadministration was selected from data on peak plasma concentration (3–5 hours) and plasma half life (3–5 hours) previously determined in pharmacokinetic studies of the compound in man (data on file, Bayer AG, Germany). The compound BAYx 1005 was supplied by Bayer AG, Leverkusen, Germany, as 250 mg of a crystalline powder in coated tablets. The two blinded bronchoprovocations were separated by an interval of about four weeks (mean 27 days; range 20–56) and performed by inhalation of the same single dose of allergen on both occasions. The dose used in the blinded provocations (table 1) corresponded roughly to the PD₂₀ value obtained in the screening session.

ALLERGEN PROVOCATION AND STUDY DAY PROCEDURES

Bronchodilators were withheld for eight hours before the allergen challenges and were not used during the study days. Short acting histamine H₁ receptor antagonists were not allowed for 48 hours before a study day. Long acting antihistamines, disodium cromoglycate, and non-steroidal anti-inflammatory drugs (NSAIDs) were not used for 10 days before a challenge session. Bronchoprovocation was performed by inhalation of allergen using a dosimeter controlled jet nebuliser (Spira Elektro 2, Respiratory Care Centre, Finland). Driven by compressed air at 7.5 l/min, the nebuliser generated an aerosol with a mass median particle aerodynamic diameter of 4.1 µm and the output was set to 7.1 l per breath. Pulmonary function was measured as FEV₁ on a spirometer (Vitalograph MDI Compact, Förbandsmaterial, Sweden). Three concentrations of allergen extract (1000, 10 000, and 100 000 SQ/ml; SQ = standardised quality, the manufacturer’s unit for allergen strength) were prepared by dissolving lyophilised powder in diluent. The extracts (Aquagen) and the diluent were from ALK Laboratories, Copenhagen, Denmark. By using the three concentrations and by varying the number of breaths from the nebuliser, the protocol used during the screening provocation resulted in approximately half log increments in the cumulated dose of allergen.

Baseline FEV₁ was defined as the best of three recordings made five minutes apart. Spirometric values were obtained at hourly intervals after drug administration and the FEV₁ value four hours after the drug was used as the baseline value for the ensuing allergen challenge. All challenges were preceded by inhalation of the diluent and, provided FEV₁ did not change by more than 10%, bronchoprovocation with allergen was started. Pulmonary function was measured every 15 minutes after inhalation of allergen until the FEV₁ had returned to within 10% of baseline, and thereafter hourly for up to six hours. For monitoring of late asthmatic reactions the patients measured their peak expiratory flow rate (PEFR) with a mini-Wright flow meter ... tests, and pharmacokinetic studies of the compound in man (data on file, Bayer AG, Germany). The compound BAYx 1005 was supplied by Bayer AG, Leverkusen, Germany, as 250 mg of a crystalline powder in coated tablets. The two blinded bronchoprovocations were separated by an interval of about four weeks (mean 27 days; range 20–56) and performed by inhalation of the same single dose of allergen on both occasions. The dose used in the blinded provocations (table 1) corresponded roughly to the PD₂₀ value obtained in the screening session.

MEASUREMENTS OF URINARY LTE₄

Urine was collected at one hour intervals before drug or placebo, four hours after drug administration, and for up to six hours after the challenge. The samples were divided into different aliquots and stored separately at −20°C and −70°C. The concentration of LTE₄ was determined with a validated and semi-automated enzyme immunoassay method and expressed as ng LTE₄/mmol creatinine.

MEASUREMENTS OF DRUG PLASMA LEVELS

Plasma samples were collected hourly before and after the challenge until the subjects left...
Figure 1 Group mean (SE) values for FEV₁ on the two study days. Placebo or 750 mg of the leukotriene biosynthesis inhibitor BAYx 1005 were ingested immediately after obtaining the first morning baseline value (−4 hours). The same single dose of allergen, corresponding to the PD₂₀ value determined prior to the study, was inhaled at t=0 on both occasions. The peak fall in FEV₁ always occurred at the recording taken 15 minutes after the challenge.

Figure 2 Peak fall in FEV₁ produced by inhalation of allergen following ingestion of placebo or 750 mg of the leukotriene biosynthesis inhibitor BAYx 1005 four hours before challenge. Individual results (□) and mean (SE) results for all 10 subjects on each occasion (■) are given. *p<0.001, Student’s paired t test.

the clinic, transported on dry ice, and stored at below −15°C until analysis was performed at the human pharmacokinetic department of Bayer AG in Leverkusen, Germany. The HPLC method had a detection limit of 8 µg/l, a precision which varied from 7.6% to 12.7%, and an accuracy which deviated by a maximum of 3.8%.

ANALYSIS OF DATA
Geometric mean PD₂₀ values were calculated on log transformed raw data. The area under the curves (AUC) for FEV₁, versus time and urinary LTE₄, versus time were calculated using the trapezoidal rule for integration. Results are presented as means (SE) and mean differences between treatments with 95% confidence intervals (CI). The data for pulmonary function and urinary levels of LTE₄, were found to be normally distributed (SigmaStat software for IBM PC, Jandel Scientific, USA). The Student’s paired t test was used to compare group means.

Differences were considered to be significant when the p value was <0.05. Period and carry-over effects of the drug treatments were analysed by the method of Hills and Armitage.29

Results
Baseline pulmonary function was not significantly different on the two study days (fig 1), nor was there any significant change in FEV₁ during the four hours following drug administration (fig 1). There were no subjective or objective signs of drug related side effects after intake of 750 mg BAYx 1005.

There was good agreement between the fall in FEV₁ at screening and placebo for the eight subjects who inhaled the same dose of allergen on both occasions with a mean maximal fall of 26.5 (2.0)% and 23.5 (3.3)% for screening and placebo, respectively. For two subjects (4 and 10), the allergen dose selected for use in the double blind sessions (see methods) differed from the dose of allergen inhaled at screening. Subject 1 had late asthmatic reactions on screening and following placebo, but not after BAYx 1005.

The airway response to allergen was substantially inhibited when BAYx 1005 was given prior to challenge, both with respect to the amplitude of the fall in FEV₁ and the duration of the reaction (fig 1). Figure 2 shows the peak fall for each individual and the group means during the two sessions. The fall in FEV₁ was smaller after BAYx 1005 for all subjects. The mean peak fall after placebo was 21.0 (3.0)% compared with 7.1 (1.7)% after BAYx 1005. The mean difference between treatments was 13.9 (95% CI 7.0 to 20.8; p<0.001). Thus, the mean inhibition of the fall in FEV₁ by BAYx 1005 was 70.0 (7.0)%.

The area under the FEV₁-time curve (AUC FEV₁) during the first hour after challenge was 5.3 (0.7) and 1.5 (0.4) for placebo and BAYx 1005, respectively. The mean difference between treatments was 3.8 (95% CI 2.2 to 5.4), p<0.001, which corresponds to a mean inhibition of the immediate airway response of 74 (10)%. The inhibition of the response during the first two hours after challenge was similarly calculated to be 63 (10.9)%.

Group mean baseline values for the urinary excretion of LTE₄ did not differ on the two study days (19.5 (6.7) and 23.5 (5.6) ng/mmol creatinine for placebo and drug, respectively), neither were there significant changes in the levels of urinary LTE₄ in the time between drug intake and allergen challenge. Thus, at the time of challenge urinary LTE₄ levels were 21.5 (4.7)
Effect of BAYx 1005 on allergen-induced airway obstruction

The leukotriene biosynthesis inhibitor BAYx 1005 significantly inhibited allergen-induced bronchoconstriction. Our findings with BAYx 1005 thus confirm previous indications that inhibitors of leukotriene biosynthesis attenuate allergen-induced bronchoconstriction. The inhibition of the early response in this study with BAYx 1005 was superior to that reported for the more short lived leukotriene biosynthesis inhibitor MK-886, and was identical to that observed with another potent and long lived FLAP antagonist, MK-591.26 The leukotriene biosynthesis inhibitors so far reported to protect against allergen-induced bronchoconstriction (MK-886, MK-591, and BAYx 1005) are all FLAP antagonists, whereas the drugs that have failed in allergen challenges of asthmatic subjects are directly acting 5-lipoxygenase inhibitors. Studies are required to establish if there is a real difference between the effects of FLAP antagonists and directly acting 5-lipoxygenase inhibitors on allergen-induced airway obstruction.

Furthermore, the extent of inhibition (about 70%) of the early asthmatic reaction with BAYx 1005 in this study and with MK-591 in the study by Diamant et al. is similar to the degree of protection which has been observed when allergen challenge has been performed in comparable study protocols after treatment with potent receptor antagonists of cysteinyl leukotrienes. Likewise, in a parallel study of the effect of BAYx 1005 on allergen-induced bronchoconstriction a lower dose of BAYx 1005 (500 mg) was given for 3.5 days and caused about 60% inhibition of the maximal fall in FEV₁ during the early response. The similar effects of several structurally unrelated drugs that inhibit the action or formation of leukotrienes by different mechanisms therefore reinforces the suggestion that leukotrienes are major mediators of the early asthmatic response in humans. Secondly, the similar effects of leukotriene biosynthesis inhibitors and receptor antagonists of cysteinyl leukotrienes on the early response to allergen suggests that it is the bronchoconstrictive cysteinyl leukotrienes rather than the leucocyte attractant LTB₄ that mediate this particular response.

One of the main end points in this study was to measure LTE₄ in urine collected before, during, and after provocation in order to follow the degree of in vivo inhibition produced by BAYx 1005. As expected, the levels of LTE₄ were increased in the samples of urine collected within two hours after the placebo treated challenge with allergen. This increase was substantially inhibited by BAYx 1005. The magnitude of inhibition of net release (level after challenge – level before challenge) of LTE₄ (76%) was similar to the inhibition of the bronchoconstrictor response by the drug (70–74%, depending upon whether the peak fall in FEV₁ or AUC at 0–1 hours was measured). There is therefore good reason to believe that the inhibition by BAYx 1005 of the increase in urinary levels of LTE₄ seen after challenge reflected its ability to inhibit pulmonary formation of leukotrienes and consequently the allergen-induced airway obstruction. There was, however, no relation between the drug plasma concentration and the degree of inhibition of the early response. The effect of BAYx 1005 on allergen-induced airway obstruction

The leukotriene biosynthesis inhibitor BAYx 1005 significantly inhibited allergen-induced airway obstruction.

Fig. 3 Group mean (SE) changes in post challenge urinary excretion of LTE₄ following placebo and the leukotriene biosynthesis inhibitor BAYx 1005. The concentration of LTE₄ in the sample of urine collected immediately after challenge was selected as the reference on each occasion. For each individual this prechallenge concentration was subtracted from the value in the samples collected every hour after the provocation test. This produced a measure of net excretion after the challenge that was unrelated to each individual’s baseline excretion of LTE₄.

The leukotriene biosynthesis inhibitor BAYx 1005 was, however, no relation between the drug plasma concentration and the degree of inhibition of FEV₁ or AUC at 0–1 hours was measured). There bronchoconstrictor response by the drug (70–22.6% of the early asthmatic reaction with BAYx 1005 had been given. Thus, the mean AUC 0–2 hours after challenge for the net increase in urinary LTE₄ was 1.7 (0.9) for the placebo session and 0.4 (0.6) for the drug treatment session (p<0.05), corresponding to an inhibition of 76%. The mean difference between treatments was 1.3 (95% CI −0.1 to 2.7). There were no differences in AUC for urinary LTE₄ between drug and placebo at time points later than three hours after challenge. Despite the similar degree of inhibition of urinary LTE₄ excretion and bronchoconstriction in the group, there was no correlation between the two responses in individuals (r = 0.20 for AUC LTE₄ at 0–2 hours versus AUC FEV₁ at 0–1 hours; p>0.58).

Measurements of drug plasma concentrations confirmed the coding, with no detectable BAYx 1005 (<8 µg/l) after placebo. On drug treatment days the peak concentration of BAYx 1005 was 10.5 mg/l (about 30 µM) (range 5.3–19.8 mg/l; SE 2.3) and occurred at 3.5 (0.4) hours. The mean plasma half life of the drug was found to be 5.2 (1.5) hours. There was no correlation between the drug levels in the subjects and the degree of inhibition of either the airway response or the urinary excretion of LTE₄ (r<0.5 for all tested hypotheses).
Dahle, Kumlin, Ihre, Zetterstroem, Dahlen

We thank Helena Blomqvist, Christina Larsson, Lilian Larsson, and Fatima Stensvad for dedicated technical assistance, and Dr W Langhans of Bayer AG, Germany and Dr Torsten Ryman of Bayer Sweden AB for kind help with practical matters including the assay of plasma levels of BAYx 1005. This study was supported by grants from the Swedish Heart Lung Foundation, the Swedish Association Against Asthma and Allergy, the Swedish Medical Research Council (project 148-90-001), the Swedish Foundation for Health Care Sciences and Allergy Research, and Karolinska Institutet.

2 Chung KF. Leukotriene receptor antagonists and bio-
4 Rasmussen JB, Eriksson LO, Margolsske DJ, Targar P, Williams VC, Anderson KE. Leukotriene D4 receptor blockade inhibits the immediate and late broncho-
5 Findlay SR, Barden JM, Easly CB, Glass M. Effect of the oral leukotriene antagonist, ICI 204,219, on antigen-
6 Dahlen B, Bjorck T, Zetterstrom O, Dahlen S-E. The leukotriene-antagonist ICI 204,219 inhibits allergen-
06/19 blocks aspirin-induced airway obstruction induced by bronchial provocation with leucine-aspirin in aspirin-
12 Hazelman A, Fruchtman R, Mohrs KH, Raddatz T, Muller-Peddhaus R. Mode of action of the new selec-
tive leukotriene synthesis inhibitor BAYx 1005 (R)-4-[2-[4-(7-deoxy-2-methyl-6,8-endo-cyclopent-2-
ene-acetic acid) benzoyl]-2-thienyl] acetic acid] and structurally related compounds. Biochem Pharm-
14 Gorenne I, Labat C, Gascard JP, Norel X, Muller-Ped-
dhaus R, Mohrs KH, et al. [R2-[4-(7-deoxy-2-methyl-
ethylene/phenyl)-3-cyclopent-2-enecaric acid] (MK-571) is a potent leukotriene synthesis inhibitor: effects on anti-
15 Gardiner PJ, Cuthbert NJ, Francis HP, Fitzgerald MA, Thompson AM, Carpenter TG, et al. Inhibition of allergen-
20 Kumlin M, Dahlen B, Bjorck T, Zetterstrom O, Granstrom E, Dahlen S-E. Urinary excretion of leukotriene E4, and 11-dehydro-thromboxane B2 in response to bronchial prov-
Effect of BAYx 1005 on allergen-induced airway obstruction

Inhibition of allergen-induced airway obstruction and leukotriene generation in atopic asthmatic subjects by the leukotriene biosynthesis inhibitor BAYx 1005.

B Dahlén, M Kumlin, E Ihre, O Zetterström and S E Dahlén

Thorax 1997 52: 342-347
doi: 10.1136/thx.52.4.342

Updated information and services can be found at:
http://thorax.bmj.com/content/52/4/342

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

Asthma (1782)
Airway biology (1100)
Lung function (773)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/