Effect of inhaled frusemide and oral indomethacin on the airway response to hypertonic saline challenge in asthmatic subjects

Leanne T Rodwell, Sandra D Anderson, Joanne Spring, Safaa Mohamed, J Paul Seale

Abstract

Background — Inhaled frusemide inhibits airway narrowing and causes a transient increase in forced expiratory volume in one second (FEV₁) during hypertonic saline challenge. This inhibitory effect could be secondary to prostaglandin release during challenge. The involvement of prostaglandins in the inhibitory action of frusemide during challenge with 4.5% NaCl was investigated by premedicating with indomethacin, a prostaglandin synthetase inhibitor.

Methods — Fourteen asthmatic subjects (eight women) aged 26.6 (range 18–56) years participated in a double blind, placebo controlled, crossover study. The subjects attended five times and inhaled 4.5% NaCl for 0.5, 0.75, 1, 1.5, 2, 4, 8, 8, and 8 minutes, or part thereof, or until a provocative dose causing a 20% fall in FEV₁ (PD₂₀ FEV₁) was recorded. Indomethacin (100 mg/day) or placebo were taken three days before all visits, except control day. The FEV₁ was measured and frusemide (38.0 (6.4) mg, pH = 9) or vehicle (0.9% NaCl, pH = 9) were inhaled 10 minutes before the challenge. Bronchodilation was calculated as the percentage rise in FEV₁ from the prechallenge FEV₁ to the highest FEV₁ recorded during the challenge.

Results — Frusemide caused a fold increase in PD₂₀ FEV₁ compared with the vehicle which was similar in the presence of both indomethacin and placebo (3.7 (95% CI 2.0 to 7.5) versus 3.3 (2.0 to 5.4)). Frusemide, but not vehicle, also caused a transient percentage rise in FEV₁ during challenge with 4.5% NaCl which was not blocked by indomethacin (3.6% (1.2 to 6.0)) or placebo (3.1% (1.0 to 5.2)).

Conclusions — Inhaled frusemide inhibited airway narrowing and caused a transient increase in FEV₁ during challenge with 4.5% NaCl. These effects were not blocked by indomethacin, which suggests that the inhibitory action of frusemide is not secondary to prostaglandin release.

(Thorax 1997;52:59–66)

Keywords: asthma, hypertonic saline, indomethacin, frusemide, bronchial responsiveness.

Inhaled frusemide inhibits the airway response to challenge with hypertonic saline in asthmatic subjects by a mechanism which may involve the blockade of chloride channels at several sites in the airways including mast cells, epithelial cells, and nerves. The inhibitory effect of frusemide on hypertonic saline challenge could also be attributed in part to its potential to release prostaglandin E₂ (PGE₂) which may indirectly relax airway smooth muscle. A hypertonic stimulus alone also has the potential to release PGE₂ from epithelial cells. The combination of frusemide and a hypertonic stimulus may enhance the release of PGE₂, resulting in the transient bronchodilation observed by Rodwell and colleagues in six of the 11 asthmatic subjects they studied.

There are several reasons why PGE₂ may be the cause of the transient bronchodilation: (1) human airway epithelium releases PGE₂; (2) frusemide stimulates PGE₂ production; (3) the protective effect of inhaled frusemide against airway narrowing caused by exercise in asthmatic subjects is inhibited by indomethacin, a drug which inhibits the synthesis of PGE₂; and (4) when PGE₂ is inhaled by normal subjects five minutes before histamine challenge there is a delay in airway narrowing similar to the delay observed during challenge with 4.5% NaCl after inhaling frusemide.

If PGE₂ is responsible for the transient bronchodilation and the "braking effect" on airway narrowing caused by hypertonic saline challenge, then indomethacin, a cyclo-oxygenase inhibitor, taken before frusemide inhalation should block the transient bronchodilation and the delay in airway narrowing.

The aim of this study was to investigate the role of prostaglandins in the transient bronchodilation caused by frusemide during challenge with 4.5% NaCl inhalation in asthmatic subjects.

Methods

SUBJECTS

Fourteen asthmatic subjects (eight women) with a mean age (range) of 26.6 (18–56) years attended the respiratory investigation unit on five occasions with at least four days between visits. Subjects had a baseline forced expiratory volume in one second (FEV₁) of 62–90% of the predicted value and/or a history of asthma. To be eligible for the study subjects had to record at least a 20% fall in FEV₁ after inhaling 4.5% NaCl on the control day. Subjects were excluded from the study if they had a history of respiratory symptoms after taking non-steroidal
Table 1 Anthropometric details, prechallenge FEV$_1$, PD$_{20}$ FEV$_1$ on control day, asthma medications, dose of inhaled corticosteroids and time on this dose (n = 14)

<table>
<thead>
<tr>
<th>Subject no.</th>
<th>Sex</th>
<th>Age (years)</th>
<th>FEV$_1$ control (% pred)</th>
<th>PD$_{20}$ FEV$_1$ control (ml)</th>
<th>Asthma medication</th>
<th>Dose of ICS (µg)</th>
<th>Time on this dose (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>27</td>
<td>63.7</td>
<td>3.7</td>
<td>S,BUD</td>
<td>1000</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>19</td>
<td>82.2</td>
<td>6.3</td>
<td>S</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>19</td>
<td>97.4</td>
<td>3.3</td>
<td>TO</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>19</td>
<td>87.2</td>
<td>8.5</td>
<td>S,BDP</td>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>53</td>
<td>70.0</td>
<td>5.0</td>
<td>S</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>56</td>
<td>88.0</td>
<td>2.9</td>
<td>S,BUD</td>
<td>800</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>20</td>
<td>86.3</td>
<td>8.6</td>
<td>S</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>23</td>
<td>82.9</td>
<td>4.4</td>
<td>S,BUD</td>
<td>2400</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>25</td>
<td>92.5</td>
<td>11.2</td>
<td>S</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>24</td>
<td>79.2</td>
<td>1.0</td>
<td>S</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>18</td>
<td>62.7</td>
<td>1.0</td>
<td>S</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>18</td>
<td>96.3</td>
<td>5.7</td>
<td>S,BUD</td>
<td>2000</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>21</td>
<td>85.4</td>
<td>1.1</td>
<td>S,BDP</td>
<td>400</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>30</td>
<td>86.0</td>
<td>21.1</td>
<td>S</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Mean 26.6 82.8 (SE 2.9) 4.2* (95% CI 2.5 to 7.1)

FEV$_1$ = forced expiratory volume in one second; PD$_{20}$ FEV$_1$ = dose of 4.5% NaCl aerosol (ml) causing a 20% fall in FEV$_1$; ICS = inhaled corticosteroids; S = salbutamol; BUD = budesonide; TO = terbutaline oral; BDP = beclomethasone dipropionate.

Only one subject (no. 3) was taking oral asthma medication.

* Geometric mean.

DELIVERY OF AEROSOL FRUSEMIDE AND ITS VEHICLE

The Fisoneb ultrasonic nebuliser (Fisons Corporation, Rochester, New York, USA) producing a dense aerosol with a mass median aerodynamic diameter of 4.7 µm was used to deliver both the frusemide and the vehicle.

In order to give a dose of frusemide similar to that used in a previous study, 2 ml of frusemide or vehicle was placed in the Fisoneb. Subjects inhaled the aerosols for 7–9 minutes via a mouthpiece while wearing nose clips. The unit was weighed (Sartorius Analytic, Göttingen, Germany) before and after nebulisation and a stopper placed in the output hole during weighing to reduce loss of volume by evaporation. The difference in weight change was recorded as the amount of frusemide or vehicle nebulised.

FRUSEMIDE AND ITS VEHICLE

Ampoules of frusemide (Lasix; Hoechst AG, Germany), each containing 20 mg frusemide in 2 ml (10 mg/ml), with a pH of 9, were used in the study. The vehicle was 0.9% NaCl adjusted daily by the investigator to a pH of 9.9–9.2 by adding sodium hydroxide dissolved in 0.9% NaCl. A pH meter (Radiometer PHM 62, Copenhagen, Denmark) was used to measure the pH of the frusemide and its vehicle. The osmolality of the frusemide and its vehicle was recorded as the amount of frusemide or vehicle nebulised. The mean (SD) amount of frusemide nebulised for the challenge was 38.0 (6.4) mg (n = 26). On two occasions subjects salivated profusely back into the Fisoneb during nebulisation so these values were not included in the calculation of the mean dose of frusemide delivered.

INDOMETHACIN AND ITS PLACEBO

Subjects ingested 50 mg of indomethacin (Arthrexin, Alphapharm, Australia) twice a day (100 mg/day) or a placebo (glucose powder in an identical capsule) for three days before each challenge visit.

Subjects were given 12 capsules of either 25 mg indomethacin or placebo at the end of the control day and visits 1, 2, and 3 and instructed to take two capsules twice a day in the morning and at night for three days before visits 1, 2, 3, and 4. The last two capsules were to be taken approximately 1.5 hours before coming to the laboratory.

One syringe with either the frusemide or vehicle was then returned to the investigator to administer to the subject. This was a double blind, vehicle controlled, randomised, cross-over study.
AIRWAY SENSITIVITY TO INDOMETHACIN
All subjects were assessed for airway sensitivity to oral indomethacin on the control visit. After recording at least a 20% fall in FEV₁ to 4.5% NaCl challenge on the control day subjects recovered spontaneously over a one hour period after challenge. They were given either a peak flow meter (Clement Clarke International Ltd, Harlow, Essex, UK) or an airflow meter and instructed how to measure and record their expiratory flow rates. The flow rate was measured before ingesting two 25 mg capsules (50 mg) of indomethacin and every hour for six hours after ingesting the capsules. The first and second hourly measurements were taken in the laboratory with subsequent measurements being carried out at home. Subjects were excluded from the study if there was a greater than 21% variability from the expiratory flow rate measured before indomethacin.

MEASUREMENT OF THROMBOXANE B₂ (TXB₂)
PLASMA LEVELS
The extent to which indomethacin inhibited cyclo-oxygenase activity was determined indirectly by measuring plasma levels of thromboxane B₂ (TXB₂) by radioimmunoassay (RIA). TXB₂ was measured because it is a stable metabolite of arachidonic acid and is found in large quantities in plasma.

COLLECTION AND PROCESSING OF VENOUS BLOOD SAMPLES
On visits 1, 2, 3, and 4 a 10 ml venous blood sample was taken from the forearm of each subject in the 10 minute period after the 4.5% NaCl challenge. The blood was immediately transferred into a 10 ml prechilled siliconised glass test tube coated with a solution of 4.5 mM EDTA and 5 μg/ml of indomethacin dissolved in ethanol. The tube was capped and gently inverted several times to ensure adequate mixing of the blood sample, EDTA, and indomethacin. This sample was immediately placed in ice chips and within 10 minutes was centrifuged for 10 minutes at 2500 rpm at 4°C. The plasma from the sample was then pipetted into two 2.5 ml cryogenic tubes and “snap frozen” in liquid nitrogen for approximately one minute. The frozen sample was removed from the liquid nitrogen and stored in a deep freeze at −80°C. At a later date the plasma samples were thawed and plasma levels of TXB₂ were measured using RIA (NEN Inc, Biomedical Products Department, Boston, Massachusetts, USA).

CHALLENGE WITH 4.5% NaCl AEROSOL
The protocol used to perform the 4.5% NaCl challenge was similar to that described by Rodwell and colleagues, although the initial inhalation periods were of a shorter duration in order to optimise the detection of changes in FEV₁, during the initial stage of the challenge. Subjects inhaled the challenge aerosol for 0.5 minutes, waited one minute, then spirometric tests were performed. If there was a 20% fall in FEV₁ from the baseline value the challenge was stopped and the subject included in the study. If a 20% fall was not recorded the challenge continued for further intervals of 0.75, 1.0, 1.5, 2.0, 4.0, 8.0, 8.0, and 8.0 minutes, or part thereof, or until a fall in FEV₁ of at least 20% was recorded.

STUDY DESIGN
Subjects were required to attend the laboratory on five occasions with a minimum of four days separating all visits because indomethacin has a half life of 2–11 hours. Drug administration was randomised so that each subject received either indomethacin and frusemide/vehicle or placebo and frusemide/vehicle.

CONTROL DAY
Eligibility for the study was assessed on the control day. On arrival at the laboratory spirometric tests (Minato Autspirometer AS500, Osaka, Japan) were performed in triplicate and repeated 10 minutes later. If there was a less than 10% variation in the FEV₁ over 10 minutes the airways were considered stable and the 4.5% NaCl challenge was performed. When a 20% fall from baseline FEV₁ was recorded the challenge was stopped and the PD₂₀ FEV₁ (ml) calculated. Lung function spontaneously recovered over the following 60 minutes and then airway sensitivity to 50 mg of oral indomethacin was assessed by measuring expiratory flow rates over the following six hours.

VISITS 1, 2, 3, AND 4
On arrival at the laboratory spirometric tests were performed in triplicate and repeated 10 minutes later. If there was less than 10% variation in these measurements subjects inhaled the frusemide or its vehicle via a Fisoneb ultrasonic nebuliser. Ten minutes later the spirometric tests were repeated in triplicate and the highest recorded FEV₁ used as the baseline FEV₁ for the 4.5% NaCl challenge. The 4.5% NaCl challenge was stopped when either a fall of more than 20% in FEV₁ was recorded or the last dose of 4.5% NaCl aerosol was nebulised. A venous blood sample was taken for the measurement of TXB₂ plasma levels in the first 10 minutes after the 4.5% NaCl challenge.

Before leaving the laboratory subjects were given either the indomethacin or placebo capsules for the next visit. They were instructed to take their indomethacin 1.5 hours before coming to the laboratory as peak plasma concentrations are reached approximately two hours after taking indomethacin.

ANALYSIS OF DATA
Effect of inhaled frusemide and its vehicle on baseline FEV₁, prechallenge
The effect of inhaling frusemide or its vehicle on baseline lung function was assessed by calculating the difference in FEV₁ before and 10 minutes after inhaling these aerosols. This was
calculated on the days the placebo for indomethacin was given.

PD_{20} FEV_{1} to 4.5% NaCl challenge
The provocative dose of 4.5% NaCl (ml) causing a 20% fall from the baseline FEV_{1} (PD_{20} FEV_{1}) was calculated and reported as the geometric mean with 95% confidence intervals. Changes in PD_{20} FEV_{1} between study days were reported as the fold change with 95% confidence intervals.

Percentage rise in FEV_{1}, during challenge
The transient bronchodilation or the percentage rise in FEV_{1} from the baseline prechallenge FEV_{1}, during challenge (% rise) was calculated by subtracting the highest FEV_{1} (l) recorded during challenge from the prechallenge FEV_{1} (l) and expressing this difference as a percentage of the prechallenge FEV_{1} (l).

Maximum percentage rise in FEV_{1}, during challenge
The maximum percentage rise recorded on the two days frusemide was inhaled was calculated. At the greater of the two values the cumulative dose of 4.5% NaCl (ml) was recorded, thus giving an indication when the maximum percentage rise in FEV_{1} occurs during challenge. The significance of the maximum percentage rise in FEV_{1}, during challenge with 4.5% NaCl was then tested by comparing the percentage rise on the frusemide day with the percentage rise on the vehicle day at the same delivered dose of 4.5% NaCl. For example, if the maximum percentage rise in FEV_{1} occurred after 5 ml on the placebo/frusemide day, then it was compared with the corresponding percentage rise in FEV_{1} at 5 ml on the placebo/vehicle day. The comparison of the maximum percentage rise between inhaled frusemide and vehicle was therefore performed only in the presence of indomethacin or placebo.

Differences in plasma TXB_{2}, levels
Plasma levels of TXB_{2} (pg/ml plasma) were compared between the indomethacin and the placebo study days.

Relationship between TXB_{2}, levels and percentage rise in FEV_{1}
The mean difference in plasma TXB_{2}, levels on the placebo/vehicle and indomethacin/frusemide days and the mean difference in the percentage rise in FEV_{1} on the placebo/vehicle and indomethacin/frusemide days were calculated. A Spearman’s rank correlation was then performed on these calculated differences.

Statistical analysis
Data are presented as mean with 95% confidence intervals or the mean and its range. The PD_{20} FEV_{1} (ml) to 4.5% NaCl challenge is summarised as the geometric mean with 95% confidence intervals. A Student’s paired t test was used to test differences between paired mean data and a Pearson’s or Spearman’s correlation test for relationships between variables. Differences were considered significant at p<0.05.

Results
FEV, ON ARRIVAL: CONTROL DAY AND VISITS 1–4
On arrival at the laboratory there was less than a 20% difference in the FEV_{1} between the control day and subsequent visits.

Effect of inhaled frusemide and its vehicle on baseline FEV_{1}: Prechallenge
There was a small increase of 0.06 l (0 to 0.12) from baseline FEV_{1} 10 minutes after inhaling frusemide and a decrease of 0.07 l (−0.13 to −0.01) after inhaling the vehicle (p=0.03, n=14). These changes were considered not clinically significant.

Effect on PD_{20} FEV_{1} of challenge with 4.5% NaCl
On the days frusemide was inhaled there was a significant increase in the PD_{20} FEV_{1}, to 4.5% NaCl challenge. In the presence of indomethacin the mean PD_{20} FEV_{1} increased from 5.4 ml (2.9 to 9.9) after inhaling the vehicle to 20.2 ml (14.5 to 28.4) after inhaling frusemide (p<0.001, n=14), which represented a 3.7 (2.0 to 7.3) fold increase. In the presence of placebo the PD_{20} FEV_{1}, increased from 4.9 ml (2.5 to 9.6) after inhaling the vehicle to 16.3 ml (11.2 to 23.7) after inhaling frusemide (p=0.001, n=14), a 3.3 (2.0 to 5.4) fold increase.

The fold increase in PD_{20} FEV_{1}, caused by frusemide was similar in the presence of indomethacin and placebo (3.7 (2.0 to 7.3) versus 3.3 (2.0 to 5.4); p=0.61, n=14). Indomethacin therefore had no effect on the increase in PD_{20} FEV_{1}, caused by frusemide.

When the vehicle was inhaled there was no significant difference in the PD_{20} FEV_{1}, between the indomethacin and placebo days with the mean fold difference being 0.9 (0.6 to 1.4); p=0.66 (n=14).

There was a range of asthma severity within the group (table 1) with the mean PD_{20} FEV_{1} being 4.2 ml (2.5 to 7.1) which is considered to be in the moderate range. Three subjects had severe asthma (PD_{20} FEV_{1} ≥ 2 ml), six had moderate asthma (PD_{20} FEV_{1} ≥ 2 ml and ≤ 6 ml), and five had mild asthma (PD_{20} FEV_{1} >6 ml). Two subjects (11 and 13) contracted a mild chest infection after visit 3 and therefore there was a period of 28 and 29 days, respectively, between visits 3 and 4.

Percentage rise in FEV_{1}, during challenge
Frusemide, when inhaled by asthmatic subjects before challenge with 4.5% NaCl, caused a transient rise in FEV_{1}, which was not blocked by indomethacin or its placebo (3.6% (1.2 to 6.0) versus 3.1% (1.0 to 5.2)) with a mean...
Inhaled frusemide, oral indomethacin and airway response to hypertonic saline in asthmatics

The prechallenge FEV$_1$ recorded after subjects that prostaglandins are involved in the transient bronchodilation during challenge. In this study, indomethacin inhibited but did not completely block the formation of plasma TXB$_2$. The results suggest that challenge maximises the opportunity to observe bronchodilation caused by inhaled frusemide during 4.5% NaCl challenge as indomethacin, a prostaglandin synthetase inhibitor, is not effective in inhibiting these responses. These findings are supported by the results of studies performed in human nasal mucosa where frusemide did not cause an increase in PGE$_2$ levels.

The significant bronchodilation during challenge observed in the presence of approximately 40 mg frusemide occurred after 2 ml of 4.5% NaCl had been nebulised. This bronchodilation during challenge has not been described in previous studies where smaller doses of frusemide have been nebulised. With the inhalation of larger doses of frusemide (40–80 mg) bronchodilation has been observed. Thus, the protective effect of frusemide which we observed against airway challenge may be partly attributable to its bronchodilating action, but only at higher doses. This is the first study to investigate the transient bronchodilation observed in the presence of frusemide during 4.5% NaCl challenge in asthmatic subjects. During exercise challenge a single maximum stimulus dehydrates the airways and a dose-response curve cannot be constructed. Subtle changes in lung function would therefore be missed during exercise challenge. Also, if subjects were at their best lung function before the start of challenge then it is unlikely that bronchodilation would be observed during the challenge. All subjects in the present study were either at less than 90% of their predicted FEV$_1$ or were known to have at least a 10% increase in FEV$_1$ after inhaling a bronchodilator. Airways obstruction before challenge maximises the opportunity to observe transient bronchodilation during challenge. In fact, there was an inverse correlation between lung function and the transient bronchodilation caused by frusemide – that is, the lower the prechallenge lung function the greater the percentage rise in FEV$_1$ during challenge.

Inhaled frusemide also caused a small increase in the prechallenge FEV$_1$ and an increase in the PD$_{20}$ FEV$_1$ to 4.5% NaCl aerosol, both of which were unaffected by premedication with indomethacin.

This study shows that indomethacin has no effect on the decrease in airway sensitivity to 4.5% NaCl challenge caused by frusemide. The 3.3-fold decrease in PD$_{20}$ FEV$_1$ on the placebo day was not significantly different from the 3.7-fold decrease in PD$_{20}$ FEV$_1$ on the indomethacin day. Plasma TXB$_2$ levels were significantly lower on the days of indomethacin administration, indicating that subjects had taken their capsules as instructed.

We selected a dose of 100 mg/day indomethacin because it blocks refractoriness to...
Figure 1 Individual dose-response curves representing the percentage fall from the prechallenge FEV₁ on the control and four study days for the 14 subjects participating in the study. □ = control day; ● = indomethacin/frusemide day; ■ = indomethacin/vehicle day; ▲ = placebo/frusemide day; ○ = placebo/vehicle day.
ultrasonically nebulised distilled water which is thought to be mediated by prostaglandins. This result suggests that the prostaglandins released in the airways by non-isotonic aerosol challenge are inhibited by taking 100 mg/day of oral indomethacin for three days before challenge. If inhaled frusemide (40 mg) enhances airway prostaglandin release, causing a rise in FEV1, during hyperosmolar saline challenge, then 100 mg/day indomethacin should at least partially inhibit prostaglandin production and reduce the rise in FEV1, during challenge.

Investigators have suggested that broncho-constrictor prostaglandins are released during indirect airway challenges such as water and metabisulphite. When these investigators gave either oral or inhaled cyclo-oxygenase inhibitors before challenge there was a significant improvement in airway sensitivity to these challenges. This improvement was enhanced in the presence of frusemide. In our study indomethacin did not improve airway sensitivity when taken before 4.5% NaCl challenge on the days indomethacin and placebo were taken. Unlike previous studies, we have evidence to support the inhibition of prostaglandin production by indomethacin as there was a significant reduction in TXB2 levels on the days indomethacin and placebo days. Unlike previous studies, we have evidence to support the inhibition of prostaglandin production by indomethacin as there was a significant reduction in TXB2 levels on the days indomethacin and placebo were taken. What is uncertain is whether this dose was effective at reducing airway prostaglandin activity.

The fact that indomethacin had no effect on the transient bronchodilation observed in the presence of frusemide during 4.5% NaCl challenge suggests that PGE2 was not implicated in these studies. Other substances that may be involved in the transient bronchodilation observed in these studies are vasoactive intestinal peptide (VIP) and nitric oxide (NO), possible neurotransmitters released from the inhibitory non-adrenergic non-cholinergic (iNANC) nervous system in human airways. The iNANC nervous system is the only known neural bronchodilator system found in the airways. A hypertonic stimulus has the potential to release sensory neuropeptides from rat trachea and human bronchial airways and an increase in airway osmolarity causes an increase in the discharge frequency of airway sensory nerves in dogs. It has been shown in vitro that VIP is released from canine intestinal tissue in response to a hypertonic stimulus. It is therefore conceivable that a hypertonic stimulus has the potential to cause the release of VIP and/or NO.

If these neurotransmitters are released in response to a hypertonic stimulus, then why was the transient bronchodilation during 4.5% NaCl challenge only observed in the presence of frusemide? There may be several possible explanations. Firstly, frusemide may delay the onset of airway narrowing by initially blocking the release of mast cell mediators and bronchodilating mediators such as VIP and NO are being released in response to the hypertonic stimulus. As the hypertonic stimulus continues, frusemide becomes ineffective at blocking mast cell mediator release and these broncho-constricting mediators override the bronchodilating effect of VIP and/or NO. Secondly, frusemide may block the release of neurotransmitters from the excitatory non-adrenergic non-cholinergic nervous system (eNANC) such as substance P which causes contraction of bronchial smooth muscle. With the temporary blockade of eNANC neurotransmitters the iNANC system would be unopposed and this would account for the observed transient bronchodilation. Whether frusemide preferentially blocks the eNANC nervous system is uncertain as this action of frusemide has not been studied. Thirdly, the release of VIP and NO, produced by a hypertonic stimulus may be dependent upon blocking a frusemide sensitive chloride channel, possibly at airway sensory nerves.

Finally, a hypertonic stimulus in combination with frusemide may stimulate the release of broncho-constricting mediators from airway epithelium. Studies performed in equine trachealis muscle have shown that frusemide inhibited cholinergic nerve stimulation; however, this response was dependent on the epithelium being intact. More recently Verleden and colleagues have shown, in human bronchial tissue where the epithelium is removed, that frusemide in combination with indomethacin was effective at inhibiting cholinergic contraction of the tissue.

In conclusion, this study shows that prostaglandins are unlikely to be responsible for the transient bronchodilation observed in the presence of frusemide during 4.5% NaCl challenge in asthmatic subjects.

The authors thank Dr Jennifer Peat for her assistance with the statistical analysis and the Pharmacy department at Royal Prince Alfred Hospital, Sydney for their assistance in coding the drugs. This research was performed with funding from the NH and MRC of Australia (LR).

Effect of inhaled frusemide and oral indomethacin on the airway response to hypertonic saline challenge in asthmatic subjects.
L T Rodwell, S D Anderson, J Spring, S Mohamed and J P Seale

Thorax 1997 52: 59-66
doi: 10.1136/thx.52.1.59

Updated information and services can be found at:
http://thorax.bmj.com/content/52/1/59

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Asthma (1782)
- Airway biology (1100)
- Lung function (773)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/