Adrenal suppression with inhaled budesonide and fluticasone propionate given by large volume spacer to asthmatic children

D J Clark, R A Clark, B J Lipworth

Abstract

Background – The aim of this study was to compare the systemic bioactivity of inhaled budesonide (B) and fluticasone propionate (F), each given by large volume spacer, on a microgram equivalent basis in asthmatic children.

Methods – Ten stable asthmatic children of mean age 11 years and forced expiratory volume in one second (FEV,) 81.6% predicted, who were receiving treatment with ≤400 μg/day of inhaled corticosteroid, were studied in a placebo controlled single blind (investigator blind) randomised crossover design comparing single doses of inhaled budesonide and fluticasone propionate 400 μg, 800 μg, and 1250 μg. Doses were given at 20.00 hours with mouth rinsing and an overnight 12 hour urine sample was collected for estimation of free cortisol and creatinine excretion.

Results – The results of overnight 12 hour urinary cortisol output (nmol/12 hours) showed suppression with all doses of fluticasone propionate (as geometric means): F400 μg (11.99), F800 μg (6.49), F1250 μg (7.00) compared with placebo (24.43), whereas budesonide caused no suppression at any dose. A comparison of the drugs showed that there were differences at 800 μg and 1250 μg levels for urinary cortisol: B800 μg versus F800 μg (2.65-fold, 95% CI 1.26 to 5.58), B1250 μg versus F1250 μg (2.94-fold, 95% CI 1.67 to 5.15). The results for the cortisol/creatinine ratio were similar to that of urinary cortisol, with fluticasone causing suppression at all doses and with differences between the drugs at 800 μg and 1250 μg.

Conclusions – Single doses of inhaled fluticasone produce greater systemic bioactivity than budesonide when given by large volume spacer on a microgram equivalent basis in asthmatic children. The systemic bioactivity of fluticasone, like budesonide, is due mainly to lung bioavailability.

Keywords: asthmatic children, adrenal suppression, fluticasone propionate, budesonide, inhaled corticosteroid.
942

Table 1 Geometric mean (95% confidence intervals) 12 hour urinary free cortisol excretion and cortisol/creatinine ratios

<table>
<thead>
<tr>
<th>Dose of inhaled corticosteroid (µg)</th>
<th>Urinary cortisol (nmol/12 h)</th>
<th>Cortisol/creatinine ratio (nmol/mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fluticasone/budesonide</td>
<td>Fluticasone/budesonide</td>
</tr>
<tr>
<td>400</td>
<td>11.99 (8.47 to 16.94)*</td>
<td>4.31 (2.86 to 6.49)*</td>
</tr>
<tr>
<td>Fluticasone</td>
<td>15.38 (9.50 to 24.75)</td>
<td>5.38 (3.27 to 8.85)</td>
</tr>
<tr>
<td>Budesonide</td>
<td>6.49 (4.58 to 9.16)**</td>
<td>2.21 (1.47 to 3.32)**</td>
</tr>
<tr>
<td>800</td>
<td>17.21 (10.69 to 27.54)</td>
<td>5.24 (3.18 to 8.61)</td>
</tr>
<tr>
<td>Fluticasone</td>
<td>7.00 (4.94 to 9.89)***</td>
<td>2.26 (1.50 to 3.40)**</td>
</tr>
<tr>
<td>Budesonide</td>
<td>20.53 (12.76 to 33.04)</td>
<td>6.57 (4.00 to 10.81)</td>
</tr>
<tr>
<td>Placebo</td>
<td>24.43 (17.26 to 34.51)</td>
<td>8.55 (5.68 to 12.85)</td>
</tr>
</tbody>
</table>

*p < 0.05; **p < 0.01; ***p < 0.001.

Urinary cortisol but not plasma cortisol. All the children were continent of urine day and night.

Protocol

A single blind (investigator blind) randomised (Latin square) crossover design was used. Patients were randomised to receive single inhaled doses of either placebo, budesonide (Pulmicort MDI, 50 µg and 200 µg per actuation, Astra Pharmaceuticals, Hertfordshire, UK), or fluticasone propionate (Fluistide MDI, 25 µg, 50 µg, 125 µg, and 250 µg per actuation, Allen and Hanburys, Uxbridge, Middlesex, UK) taken in conjunction with their respective large volume spacer (Neuhaler or Volumatic). Budesonide and fluticasone were given in identical single doses of 400 µg, 800 µg, and 1250 µg. A second placebo day was included one week after the last randomised treatment in order to check the reproducibility of urinary cortisol excretion between the two study days. Each study dose was taken at 20.00 hours at night with mouth rinsing, 15 minutes after the patient’s usual bronchodilator treatment, with at least three days washout between each study treatment. The dose of inhaled steroid was kept constant throughout the study except for omitting it on the evening of the study day. Before taking the study drug patients emptied their bladder and collected all their overnight urine for 12 hours until 08.00 hours the following morning.

Measurements

Overnight 12 hour urinary free cortisol excretion and creatine excretion were measured. The urinary cortisol was measured using a commercial radioimmunoassay kit (Instar, Wokingham, Berkshire, UK). The coefficients of variability for intra-assay and interassay analytical imprecision were 8.50% and 6.65%, respectively. Urinary creatinine was measured on a Cobas-Bio autoanalyser (Roche Products Ltd, Welwyn Garden City, Hertfordshire, UK). The intra-assay and interassay coefficients of variability were 4.55% and 0.63%, respectively.

Statistical analysis

All data were analysed using multifactorial analysis of variance (MANOVA) and Duncan’s multiple range testing with subjects, treatments, period, and doses as factors. All data were log transformed as they were not normally distributed. For comparison of the proportion of cortisol values below 10 nmol/12 hours the χ² test was used.

Results

Data for 12 hour urinary free cortisol and cortisol/creatinine ratio are given in table 1. The overnight 12 hour urinary cortisol output (nmol/12 hours) showed suppression for all doses of fluticasone propionate compared with placebo (as fold difference from placebo with 95% CI): F400 µg (2.04-fold, 95% CI 1.13 to 3.36), F800 µg (3.77-fold, 95% CI 1.89 to 7.50), F1250 µg (3.49-fold, 95% CI 1.98 to 6.15), whereas budesonide caused no suppression at any dose (fig 1). Differences were seen between the drugs at dose levels of 800 µg and 1250 µg for urinary cortisol: B800 µg versus F800 µg (2.65-fold, 95% CI 1.26 to 5.58), B1250 µg versus F1250 µg (2.94-fold, 95% CI 1.67 to 5.15). The results for the cortisol/creatinine ratio were identical to those of urinary cortisol with suppression by fluticasone at all doses and with differences between the drugs at 800 µg and 1250 µg. The data for all three doses are also presented as individual values to show dispersion and outliers (fig 2).

Figure 1 Geometric mean (SE) 12 hour urinary free cortisol levels with single doses of budesonide (BUD), fluticasone (FP) and placebo. Crosses denote a significant difference (p < 0.05) between budesonide and fluticasone at a given dose level. Asterisks denote a significant difference between the steroid dose and placebo (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure 2 Individual values of urinary free cortisol for fluticasone (FP) and budesonide (BUD). Six of 30 budesonide and 18 of 30 fluticasone measurements were below 10 nmol/12 hours (p < 0.005).
Adrenal suppression with budesonide and fluticasone propionate

and show that six of 30 budesonide measurements and 18 of 30 fluticasone measurements were below 10 nmol/12 hours (p < 0.005).

There was no significant difference in urinary cortisol excretion between the two placebo days: placebo day 1 (18.58 nmol/12 hours) versus placebo day 2 (18.71 nmol/12 hours). The intrasubject coefficient of variation for the placebo days was 5.37%.

Discussion
The results of this study show that, when given by large volume spacer to asthmatic children, single inhaled doses of fluticasone propionate of 400–1250 µg produce suppression of urinary cortisol compared with placebo, whereas corresponding doses of budesonide do not.

The greater systemic bioactivity of fluticasone propionate revealed by this study can be explained by its basic pharmacology. The estimates for topical glucocorticoid activity as assessed by the MacKenzie skin vasoconstrictor assay vary. However, it is generally accepted that fluticasone propionate is at least twice as potent as budesonide and beclomethasone dipropionate. Fluticasone also has a greater glucocorticoid receptor affinity than budesonide, higher lipophilicity, and a longer glucocorticoid/receptor complex half life. In adults the plasma half life of fluticasone is 14.4 hours compared with 2.3 hours for budesonide. Interestingly, in children there is 40% greater clearance of budesonide with a shorter elimination half life at 1.5 hours compared with adults. This increased clearance in children probably explains why no suppression of overnight urinary cortisol compared with placebo was found at any of the doses of budesonide studied when we have previously found suppressed overnight urinary cortisol with single doses of 1000 µg in adults. The absence of significant dose related suppression of urinary free cortisol with budesonide has been demonstrated in a previous pediatric study with doses ranging from 200 µg to 800 µg/day. From first principles, greater systemic bioactivity effects would be predicted for a steroid which is more potent, has greater affinity and, when given by the inhaled route, has no first pass metabolism in the lung.

In adult studies budesonide delivered by Nebuhaler causes increased adrenal suppression compared with metered dose inhaler alone. This presumably reflects the effect of enhanced lung bioavailability with the spacer which outweighs the effect of reduced oral bioavailability, at least for budesonide where first pass metabolism is 89%. The present finding of adrenal suppression caused by single doses of inhaled fluticasone compared with budesonide, using a large volume spacer and mouth rinsing, further highlights the point that lung bioavailability is also the determinant of its systemic bioactivity in asthmatic children.

In conclusion, our study provides clear evidence of adrenal suppression with single doses of inhaled fluticasone propionate given by spacer to asthmatic children. It is likely that, with repeated dosing, the differences between fluticasone and budesonide would be greater due to the longer plasma half life and receptor binding affinity as well as enhanced systemic tissue retention for fluticasone than for budesonide. Further chronic dose ranging studies are now indicated to resolve this issue.

We are grateful to Dr J Cater for his assistance in the recruitment of patients for this study. Dr Clark is funded by a grant from the Astra Foundation.

5 English AF, Neate MS, Quirt DJ, Sareen M. Biological activities of some corticosteroids used in asthma. Am J Respir Crit Care Med 1994; 149(Suppl A):A212.
10 Thorsson L, Edshacker S, Conradson TB. Lung deposition of budesonide from turbuhaler is twice that from a pressurized metered-dose inhaler (pMDI). Eur Respir J 1994; 7:1839-44.
Adrenal suppression with inhaled budesonide and fluticasone propionate given by large volume spacer to asthmatic children.
D. J. Clark, R. A. Clark and B. J. Lipworth

Thorax 1996 51: 941-943
doi: 10.1136/thx.51.9.941

Updated information and services can be found at:
http://thorax.bmj.com/content/51/9/941

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/