Severe lipoid pneumonia following attempted suicide by mineral oil immersion

I R Hussain, F P Edenborough, R S E Wilson, D E Stableforth

Abstract
Following an attempted suicide by drowning in a vat of mineral oil, a previously fit man survived the usually fatal lipoid pneumonia resulting from total immersion after intensive support and prolonged steroid therapy with recovery of chest radiography and pulmonary function at one year.

(Thorax 1996;51:652-653)

Keywords: lipoid pneumonia, mineral oil immersion, suicide attempt.

Lipoid pneumonia usually presents after chronic recurrent ingestion of oily substances, commonly laxatives, or exposure at work. Massive exposure by total immersion is usually fatal. We report a unique case of survival after attempted suicide by deliberate immersion in mineral oil.

Case report
A 43 year old non-smoking industrial supervisor with chronic depression was rescued after deliberately jumping into a vat of mineral oil used for machine oil blending. He was admitted as an emergency, coughing and breathless having ingested oil. Clinical examination was normal. Investigations revealed a leucocytosis of 24,000/mm³ and hypoxia of P_{aO_2} 9·0 kPa, P_{aCO_2} 5·7 kPa on 35% inspired oxygen which responded to an increased concentration of 60% inspired oxygen. Initial chest radiography and serum electrolytes were normal.

Despite oral ampicillin 500 mg four times a day he became pyrexial with a productive cough and by the fifth day was agitated and confused with hallucinations which required haloperidol and amitriptyline. Computed tomography (CT) of the thorax showed bilateral basal pneumatic consolidation. Broad spectrum antibiotics were commenced despite negative blood and sputum cultures, and over the next 10 days his condition remained stable. From day 16 he deteriorated further with worsening hypoxia (P_{aO_2} 5·9 kPa, F_iO_2 60%), respiratory alkalosis and pyrexia accompanied by increased agitation and confusion. Chest radiography showed right basal consolidation but sputum culture grew respiratory commensals only. Empirically, 30 mg of oral prednisolone was commenced. Fibreoptic bronchoscopy with transbrachial biopsy specimens on day 22 confirmed lipoid pneumonia with an organising pneumonitis and foamy macrophages containing lipid droplets. No infective organisms were isolated. Repeat thoracic CT scanning confirmed increased basal consolidation and a right pleural effusion (fig 1) which, on aspiration, revealed 200 ml of blood stained, sterile exudate with a protein content of 46 g/l. Liver function became mildly deranged with an elevated international normalised ratio of 1·4 and he was commenced on vitamin K. A CT brain scan revealed no focal abnormalities and it was felt that his mental state was due to a post-anoxic confusional state rather than cerebral oil embolism. He developed troublesome ventricular and supraventricular tachycardias which responded to intravenous and oral amiodarone; this was stopped prior to discharge. Electrocardiographic and echocardiographic findings were normal.
Severe lipid pneumonia

He was finally discharged after 33 days on 20 mg oral prednisolone per day. Three weeks after discharge (day 54) his cough persisted and his chest radiograph remained abnormal (fig 2) but by eight weeks after discharge he had regained 15 kg in weight and pulmonary function tests revealed only mild abnormalities (forced expiratory volume in one second/forced vital capacity 74%, lung volumes 90%, gas transfer factor 83% predicted). His prednisolone was tailed down and at one year his lung function tests and chest radiograph were normal.

Discussion

Reported causes of lipid pneumonia include chronic ingestion of small quantities of mineral oil-based laxatives in the old or very young, oily nasal drops, lip gloss or Vaseline, and exposure in the work place such as while siphoning diesel fuel, oil spraying in the engineering industry, or whilst cleaning oil-containing vats. Total immersion is rare and usually fatal. No references to deliberate suicide attempts have been found.

Presenting features include cough, fever, and hypoxaemia with radiographic consolidation, leucocytosis, and a negative infection screen. Traditionally, the diagnosis requires recognition of lipid laden macrophages in sputum or open lung biopsy specimens. Fibroepithelial bronchoscopy with bronchoalveolar lavage has a high diagnostic yield and, in some cases, lavage may be therapeutic. In our case, despite significant aspiration, the bronchoalveolar lavage on day 22 was negative for oil staining.

Magnetic resonance imaging (MRI) and CT scanning have been used as non-invasive methods for aiding the diagnosis of lipid pneumonia. Lipid deposits show high signal intensity on T1 weighted MRI sequences whilst CT scans may reveal low density (fatty) areas within consolidated lung. Neither technique is in itself diagnostic.

The pathology of lipid pneumonia due to animal fats is a brisk inflammatory pneumonitis leading to necrosis. Vegetable and mineral oils emulsify and induce a foreign body reaction with foamy lipid laden macrophages, interstitial giant cells, and progressive fibrosis which is often indolent until infection supervenes. Immediate survival after total immersion usually leads to death within hours with evidence of systemic emboli. Later deaths in the absence of embolisation result from prolonged hypoxia associated with pulmonary fibrosis.

Treatment of lipid pneumonia involves identification and removal of the initiating agent, oxygen therapy and oral steroids with or without antibiotics. Steroids may effect rapid improvement and fever lysis, though premature reduction may lead to relapse and prolonged treatment has been advocated. Although persisting radiographic abnormalities and reduced lung function due to fibrosis have been reported after chronic ingestion, our patient now has normal radiographic and lung function tests at one year.

Lipid pneumonia due to chronic ingestion often presents diagnostic challenges, though bronchoscopy with transbronchial biopsy now offers a safer route to histological diagnosis than traditional open lung biopsy. Massive exposure usually results in death due to oil emboli. In both situations oxygen and steroid therapy are currently the treatment of choice with prolonged therapy aimed at reducing pulmonary fibrosis. The role of therapeutic bronchoalveolar lavage in acute cases remains to be evaluated.

The authors thank Dr J Henderson, Consultant Radiologist, for reviewing the thoracic CT scans and Miss K Boyce for typing the manuscript.

Severe lipoid pneumonia following attempted suicide by mineral oil immersion.

I R Hussain, F P Edenborough, R S Wilson and D E Stableforth

Thorax 1996 51: 652-657
doi: 10.1136/thx.51.6.652

Updated information and services can be found at:
http://thorax.bmj.com/content/51/6/652

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/