Atopy, bronchial hyperresponsiveness, and peak flow variability in children with mild occasional wheezing

Hector Roizin, Avner Reshef, Ido Katz, Shlomo Benzaray, Michael Lison, Robert J Shiner

Abstract

Background — Children who suffer from recurrent wheezy episodes are often promptly classified as asthmatic. The aim of this study was to evaluate a population of mild wheezy children with repeatedly normal spirometric tests at rest for atopy, bronchial hyperresponsiveness, and peak expiratory flow variability.

Methods — Thirty-nine children aged 6–16 years with 1–12 wheezy attacks during the previous year were recruited from a community paediatric primary health care clinic serving an urban Israeli population. The conditions for inclusion were a physician-diagnosed wheeze on auscultation and normal spirometric tests at rest on at least three occasions. Evaluation included skin prick tests for atopy and a physician-completed questionnaire. In addition, two tests of bronchial hyperresponsiveness (BHR) were performed — namely, exercise-induced bronchospasm and inhaled methacholine hyperresponsiveness — as well as diurnal variability of peak expiratory flow (PV).

Results — One or more tests of BHR/PV were positive in 27 (69%) but repeatedly negative in 12 (31%). In terms of frequency of wheezing attacks, atopy, and questionnaire responses, there were no differences between BHR/PV and non-BHR/PV children, with the exception of a history of chest radiography proven pneumonia (only noted in the BHR/PV group). Overall, evidence of atopy (mainly indoor allergens) was noted in 21 (56%) of those tested and parental smoking in 29 (74%) of households. Thirty-two (82%) of the children complained of an exercise-related wheeze, yet exercise-induced bronchospasm was only demonstrated in nine (23%).

Conclusions — This selected group of wheezy children appears to be intermediate between a normal and clearly asthmatic population and, despite the recurrent wheezy attacks, some should probably not be classified as asthmatic by conventional criteria. Important aetiological factors in the symptomatology of these children may include parental smoking and atopy as well as other elements such as viral infections.

Keywords: wheeze, bronchial hyperresponsiveness, atopy, passive smoking.

A large number of children may present repeatedly with a history of wheezing. In practice, children with occasional wheezing are often promptly classified as asthmatics with implications both to the individual and in terms of the quality of the epidemiological data used to establish the true prevalence of asthma. Asthma awareness is increasing, and concurrently a disproportionate increase in wheezing illness is being reported. The prevalence of hayfever and eczema has increased substantially. Additionally, the role of house dust and other domestic allergens in the induction of asthma in children has recently been re-emphasised. Although the definition of asthma remains somewhat controversial, a low forced expiratory volume in one second (FEV₁) in the presence of a history of recurrent wheeze is consistent with asthma, especially if a reversible component can be demonstrated. Atopy and wheeze are associated with a reduced FEV₁.

In the presence of normal spirometric parameters various provocation tests, including a 10% or more reduction in FEV₁ after exercise and methacholine inhalation challenge, as well as non-provoked spontaneous diurnal peak expiratory flow variability, are considered to be helpful in the diagnosis. Methacholine and histamine inhalation challenge tests have been used to screen populations for asthma but are thought to be somewhat oversensitive as a diagnostic tool in the asymptomatic population. In addition, variability in peak expiratory flow (which reflects spontaneous variations in airway calibre) not accompanied by any increase in methacholine responsiveness has been noted in the presence of respiratory symptoms. It has recently been suggested that asthma may be better defined as recent wheeze plus increased bronchial hyperresponsiveness (BHR).

Some children wheeze from time to time in the presence of repeatedly normal spirometric values at rest. These children pose a clinical dilemma, frequently resulting in unnecessary diagnostic labelling and treatment. We hypothesised that if these children were really asthmatic, it would be appropriate to investigate some of the main aetiological factors known to be important in inducing asthma in this seemingly homogeneous population of wheezy children.

Methods

The population studied was aged between six and 16 years and referred by a specialist paediatrician working in a community clinic.
Wheezeing, bronchial hyperresponsiveness, and peak expiratory flow variability

following a finding of wheezeing on auscultation. The set-up of the services in that area is such that the clinic provides primary health care for a low socioeconomic urban population. The children who were referred from the community were subsequently studied at the Chaim Sheba Medical Center and had had 1–12 wheezing attacks a year over a two year period.

Additional conditions for referral were: (1) normal spirometric values at rest on at least three occasions over a two month period; (2) no hospital admissions during the previous three years; (3) no evidence of recent respiratory tract infection; and (4) no history of regular prophylactic asthma therapy. They were excluded if there was a history of cardiac or neuromuscular disorders or there were chest wall deformities. All subjects and parents were informed of the nature of the study before consenting to participate.

LUNG FUNCTION AND BRONCHIAL HYPERRESPONSIVENESS

Recordings of FEV₁ and FVC (forced vital capacity) were made with a dry bellows spirometer (Vitalograph, Buckingham, UK) taking the highest of the first three successive measurements within 5% of each other. Spirometric tests were only considered normal if the values for FEV₁, FVC, FEV₁/FVC, and Vmax60 (maximal expiratory flow measured from the volume-time curve at 50% of vital capacity) were within normal limits for the Israeli population. Inhalation tests were performed with methacholine chloride using the Cockcroft protocol. The solutions were inhaled via a face mask in increasing doubling concentrations from 0.125 to 16 mg/ml by aerosol. The nebuliser had an output of 0.25 ml/min at an airflow rate of 5 l/min. The subject was asked to breathe with a normal tidal volume for two minutes and consecutive doses were administered at five minute intervals. The FEV₁ was measured at 30 and 90 seconds after each inhalation and the test was discontinued when the FEV₁ had fallen by 20% or more. The provocative concentration of methacholine required to lower the FEV₁ by 20% (PC₂₀) was considered significant if it was 8 mg/ml or less. The test was repeated after six months in subjects with a PC₂₀ of more than 8 mg/ml on the first occasion.

All exercise testing was performed in the same ambient conditions at the Respiratory Physiology Laboratory of the Chaim Sheba Medical Center. The exercise test involved running on a treadmill at an angle of 10 degrees at a speed of 8 km/hour for six minutes. A minimum pulse rate of 160/minute was obtained in all subjects. Measurements of FEV₁ were made before and at four, seven, and 10 minute intervals following the test. The exercise test was repeated in all subjects after three weeks.

All families were given a mini-Wright peak flow meter and children and parents were instructed as to its correct use. They were asked to record the highest of three daily morning and evening values over a three week period which were measured at approximately the same time every day. Peak expiratory flow (PEF) variability (PV) was considered significant if a diurnal variation (difference between maximum and minimum PEF measured on the same day as a percentage of the maximum PEF) of more than 15% was calculated on at least three days in addition to an absolute difference between the peak and trough PEF values of more than 20% over the three week period.

Every effort was made to keep to the same order of investigations and this was achieved in most cases – namely, the methacholine inhalation challenge, exercise testing, three weeks of PEF measurements, followed by a repeat exercise test. The exercise test and methacholine inhalation challenge were never performed on the same day.

ATOPIC STATUS

Atopic status was assessed by a skin prick test with the following inhalant allergens: olive pollen, mixed grasses (June, timothy, orchard, rye), weeds (sagerbush, cocklebur, Bermuda, Russian thistle), house dust mite (D. farinae), cockroach (Blattella germanica) (cockroach allergens kindly supplied by S B Lehrer, Tulane University, USA).

Histamine and saline were used as positive and negative controls. A skin prick test was considered positive if it showed a wheal size similar to or larger than the histamine control (+3 or larger wheal) and negative if there was no response or the same response as to the saline control. The mean wheal size in this group was 5-8 mm (coefficient of variation 22.5%). A patient was considered atopic if one or more of the above tests was positive.

QUESTIONNAIRE

Details of the respiratory symptom history were obtained from both the subjects and parents by a physician–completed questionnaire. Questions were asked regarding a family history of asthma, number of wheezy attacks over past 12 months, nocturnal wheeze or cough, wheeze on exercise or rhinitis-associated wheeze, history of hay fever, vernal conjunctivitis as well as parental smoking. In addition, questions were asked about a history of well documented radiographically proven pneumonia.

DATA ANALYSIS

Correlation between each clinical parameter and the presence of BHR/PV was performed using the χ² test or Fisher’s exact method for categorical variables and ANOVA for continuous variables. A logistic regression model was employed using BHR/PV as a dependent variable and clinical parameters as independent variables in order to determine the predicting factor (odds ratio) for the presence of BHR/PV. Statistical analysis was performed by STATVIEW package (Abacus Concepts, Berkeley, USA) and BMDP statistical software (Los Angeles, USA). All reported p values are two tailed and a p value of less than 0.05 was considered positive.
Results

Fifty four children were referred for assessment, six of whom were excluded because of a subsequent finding of obstruction during spirometric testing at rest. Before initiation of the study five were deemed non-compliant and in four a repeat history was unsatisfactory. Thirty nine children met all of the above criteria and all completed the full evaluation with the exception of two subjects who declined skin prick testing.

BHR/PV was defined as a positive result in one or more of the three tests (methacholine inhalation, PEF variability, and exercise-induced bronchospasm) and was noted in 27 patients. Overlap was clearly present in these 27 children with BHR/PV, with a significant PC_{20} to methacholine in 20 (74%), PEF variability (PV) in 15 (55-6%), and exercise-induced bronchospasm in nine (33-4%). The breakdown of BHR/PV in the whole population of wheezy children is as shown in table 1. In five children PV was clearly present despite no evidence of BHR by other methods when tested at the same time. All tests for BHR/PV were negative in 12 and in no case did the repeated methacholine inhalation challenge or exercise test result in a change in classification from non-BHR/PV to BHR/PV. We did not repeat methacholine inhalation challenge in the positive children. Table 2 gives the male/female ratio, mean age, as well as the mean number of attacks per year. Figure 1 shows the percentage of positive skin tests in children from both groups. Of the 37 subjects who were skin tested 21 (57%) were atopic, and most of these atopic children responded to dust mite (18, 86%) and cockroach (13, 67%) allergen extracts. There were no statistically significant differences in the presence or absence of atopy between the BHR/PV and non-BHR/PV groups.

Figure 2 gives the results of questionnaire responses. There were no statistically significant differences between the groups except for a history of radiographically proven pneumonia (p<0.05, Fisher's exact method). This parameter has been shown to be predictive for BHR/PV (odds ratio 11.5, p<0.05, confidence interval 90%).

No other anamnestic or clinical factor could predict the development of BHR/PV in this group of wheezy children. Symptoms of wheeze on exercise and nocturnal wheeze were common and were noted in 32 (82%) and 29 (74%), respectively.

At least one parent smoked in 29 (74%) of the households, but in 18 only the father smoked. Eleven (28%) of the mothers smoked during pregnancy. Figure 3 refers to a history of past atopic disease, asthma in the family, and parental and maternal smoking. There were no statistically significant differences between the groups.

Discussion

We decided to base the study of this carefully selected well characterised group of children on physician-diagnosed wheeze as many of the recent reports of asthma in children are based on reporting by a patient or parent. In one study 74% of non-atopic wheezy children with no evidence of histamine BHR were classified as asthmatic and 21% were receiving medication. Despite the fact that a universally acceptable definition of asthma remains elusive, much has been learned about atopy and BHR in a clearcut asthmatic population of children. Testing for BHR is intended to diagnose both provoked and spontaneous variations in airway

Table 1 Criteria for bronchial hyperresponsiveness (BHR/PV) in wheezing children (n = 39)

<table>
<thead>
<tr>
<th>Test</th>
<th>No positive</th>
<th>% Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methacholine</td>
<td>20</td>
<td>51.2</td>
</tr>
<tr>
<td>PEF diurnal variability (PV)</td>
<td>15</td>
<td>38.4</td>
</tr>
<tr>
<td>Exercise</td>
<td>9</td>
<td>23.0</td>
</tr>
<tr>
<td>BHR/PV*</td>
<td>27</td>
<td>69.2</td>
</tr>
</tbody>
</table>

*One or more positive tests.

Table 2 Mean (SE) demographics and frequency of wheezing in BHR/PV and non-BHR/PV children

<table>
<thead>
<tr>
<th>BHR/PV*</th>
<th>Non-BHR/PV*</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 27)</td>
<td>(n = 12)</td>
<td>(n = 39)</td>
</tr>
<tr>
<td>Male/female</td>
<td>8:10</td>
<td>6:6</td>
</tr>
<tr>
<td>Age (years)</td>
<td>10.8 (0.5)</td>
<td>11.3 (0.7)</td>
</tr>
<tr>
<td>Attacks/year</td>
<td>3.4 (0.6)</td>
<td>2.5 (0.8)</td>
</tr>
</tbody>
</table>

Figure 1 Skin test results in both BHR/PV and non-BHR/PV subjects: overall atopy and response to individual allergen extracts. BHR = bronchial hyperresponsiveness.

Figure 2 Results of questionnaire in both BHR/PV and non-BHR/PV subjects (relating to details of past medical history). BHR = bronchial hyperresponsiveness. * p<0.05.
calibre, and therefore we decided to investigate
three indices of lung function variability with
two provocation methods (methacholine and
exercise) and spontaneous variation (diurnal
peak flow measurements). Atopy was present
in 80–90% of childhood asthmatics.6–11 Histam-
ine or methacholine BHR has been noted in
66–85%,12–16 PEF variability in 60–72%,11 and
exercise-induced bronchospasm in up to
89% of asthmatic children15 but is probably
lower in milder asthma.14 Our local experience
is consistent with the published data from vari-
umous regions of the world. It has been shown
that respiratory tract symptoms may be ac-
companied by changes in PEF without dem-
onstrable methacholine BHR.6 Furthermore, a
clinical evaluation of children with mild oc-
casional wheezing reveals that they frequently
complain of wheezing on exercise and this was
borne out by the results of our physician-com-
pleted questionnaire. It therefore seemed ap-
propriate to include PEF variability as well as
exercise testing in our evaluation.

It is likely that, with three different tests
intended to evaluate spontaneous and pro-
voked variations in airway calibre, which were
repeated after six months, that BHR/PV was
effectively excluded in 12 of the wheezy
children. Atopy in the general paediatric popula-
tion is between 25% and 35%,17 yet 56% of
our wheezy children were atopic, regardless of
the presence of BHR/PV. Reactions to domestic
allergens such as house dust mite and cock-
roaches were detected in most of the atopic
subjects. The majority of this population does
not keep household pets and we therefore did
not skin test for these allergens.

The children were recruited from a single
community paediatric clinic serving a low
socioeconomic population similar to that in
the study by Gelber et al.18 Similarly, in our study
38% had positive skin tests to cockroach al-
lergen (either whole body extract, faecal, or
both).

It has been suggested that, for epi-
demiological purposes, current wheeze and
BHR is consistent with a diagnosis of asthma19
and, based on these criteria, 27 (69%) of our
39 subjects could be diagnosed as asthmatic.

In addition, despite repeated testing, overall
exercise-induced bronchospasm was only de-
tected in nine (23%) and, even in the BHR/
PV group, in only nine of 27 (33%) which is
considerably less than one would expect from
an asthmatic population. It was remarkable
that as many as 82% of the children in both
the BHR/PV and non-BHR/PV groups had
complained of wheezing on exercise. All of
the children with a history of radiographically
proven pneumonia had evidence of BHR/PV
(eight of 39). Wheeze has been associated with
low values of FEV1 and FEV1/VC19 and atopy
with a reduced FEV1/VC.20 Our very carefully
selected group of subjects had repeatedly nor-
mal FEV1, FEV1/VC and VmaxF50 at rest.

It must be noted that the sample size of this
group was not predetermined by power based
calculations, but rather was dependent on the
number of children that could be recruited from
a specific neighbourhood. They appeared to
be homogeneous in terms of their symp-
tomatology, physical and physiological find-
ings, as well as area of residence. Careful
scrutiny of the information, as shown in figs
1–3, points to many similarities between the
groups.

More than half of our group were sensitive
to domestic allergens and, in addition, parental
smoking – which could be a significant con-
tributory factor11 – was reported in three quar-
ters of the households. This compares with a
prevalence of 24–39% of smoking in the general
Israeli population.21 Eleven (28%) of the
mothers smoked (during and after pregnancy).
However, if the fathers were considered, one
or more parent smoked in 29 (74%) of house-
holds. As we were studying a low socio-
economic population with a high unemploy-
ment rate, it may be relevant that fathers spend
more time at home than in other social groups.
In addition, the role of viral respiratory tract
infections, particularly rhinovirus, needs to be
further investigated in these children as they
may be an important trigger of symptoms.22,23

We conclude that some children with oc-
casional wheeze may not be asthmatic by con-
ventional criteria. It is likely that various factors
may be responsible for the symptomatology in
certain “susceptible population groups”.

We acknowledge the support of the Israel Lung Association and
of Trupharm, Netanya, Israel and thank Vitalograph, Buck-
ingham, UK who supplied some of the equipment used in the
study. We would also like to thank Ms Angela Shirani (Gertner
Institute, Tel-Hashomer) for her dedicated assistance with the
statistical analysis.

1 Strachan DP, Anderson HR. Trends in hospital admission
2 Hill R, Williams J, Tattersfield A, Britton J. Change in the
use of asthma as a diagnostic label for wheezing illness in
3 Burr ML, Butland BK, King S, Vaughan-Williams E.
Changes in asthma prevalence: two surveys 15 years apart.
4 Ninan TK, Russel D, Russell G. Increasing prevalence of
respiratory symptoms and atopy in Aberdeen school-
5 Sporkin R, Holgate ST, Platts-Mills TAE, Goswissell J.
Exposure to house-dust mite allergen (Der p 1) and the
6 Clough JB, Williams JD, Holgate ST. Effects of atopy on
the natural history of symptoms, peak expiratory flow and
bronchial responsiveness in 7- and 8-year old children.
with cough and wheeze. Am Rev Respir Dis 1991;143:
755-60.
7 Toedeb BG, Peat JK, Salome CM, Woolcock AJ. Toward a
definition of asthma for epidemiology. Am Rev Respir Dis
8 Roizin H, Steinberg A, Tabachnick E, Molho M, Benzaray
S, Augarten A, Har-Even D, Barzilay Z, Yahav J. Ethnic
differences in lung function in Israeli children. Thorax
1993;48:906-10.
9 Cockroft DW, Killian DN, Mellon JJ, Hargreave FE. Bron-
chial reactivity to inhaled histamine: a method and clinical
10 Bousquet J, Michel FB. In vivo methods for study of aller-
skin tests, techniques and interpretation. In: Middleton
E, Reed CE, Ellis EF, Adkinson NF, Yunginger JW, Busse
WW, eds. Allergy, principles and practice. St Louis: Mosby-
11 Clifford RD, Radford M, Howell JB, Holgate ST. Prevalence
of atopy and range of bronchial response in 7 and 11-
12 Hopp R], Bewtra AK, Nair NM, Watt GD, Townley RG.
Methacholine inhalation challenge studies in a selected
13 Salome CM, Peat JK, Britton WJ, Woolcock AJ. Bronchial
hyperresponsiveness in two populations of Australia
schoolchildren. 1. Relation to respiratory symptoms and
14 Lebowitz MD, Sherrill D, Holberg CJ. Effects of passive
smoking on lung growth in children. Pediatr Pulmonol
15 Anderson SD, Silverman M, Konig P, Godfrey S. Exercise-
16 Godfrey S, Bar-Yishay E. Exercise-induced asthma revisited.
Respir Med 1993;87:331-44.
17 Godfrey RG, Griffiths M. The prevalence of immediate
positive skin tests to D pannorumus and grass pollen in
18 Gelber LE, Sitterer LH, Bouchez JS, Pollard SM, Chapman
MD, Platts-Mills TAE. Sensitisation and exposure to indoor
allergens as risk factors for asthma among children
presenting to hospital. Am Rev Respir Dis 1993;
147:573-8.
19 Sherrill D, Holberg CJ, Lebowitz MD. Differential rates of
lung growth as measured longitudinally by pulmonary
function in children and adolescents. Pediatr Pulmonol
1990;8:145-54.
20 Sherrill D, Sears MR, Lebowitz MD, Holdaway MD, Hewitt
CJ, Flannery EM, et al. The effects of airway hyper-
responsiveness, wheezing and atopy on longitudinal pul-
monary function in children: a 6-year follow-up study.
21 Department of Health Education. Smoking prevalence in
22 Johnston SL, Sanderson G, Parretmore PK, Smith S, Bardin
PG, Bruce CB, et al. Use of polymerase chain reaction
for diagnosis of picornavirus infection in subjects with and
without respiratory symptoms. J Clin Microbiol 1993;31:
111-7.
23 Dodge R, Burrows B, Lebowitz MD, Cline MG. Antecedent
features of children in whom asthma develops during the
second decade of life. J Allergy Clin Immunol 1993;92:
744-9.
Atopy, bronchial hyperresponsiveness, and peak flow variability in children with mild occasional wheezing.

H Roizin, A Reshef, I Katz, S Benzaray, M Lison and R J Shiner

Thorax 1996 51: 272-276
doi: 10.1136/thx.51.3.272

Updated information and services can be found at:
http://thorax.bmj.com/content/51/3/272

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/