Continuous volume computed tomography in pulmonary embolism: the answer, or just another test?

Few exercises in clinical medicine are more troublesome than securing a diagnosis of pulmonary embolism. Because of the protean clinical features of pulmonary embolism, much reliance has been placed on the direct and indirect imaging of clot within the pulmonary arteries and/or peripheral venous system. This has prompted the cynical observation that radiologists and other imagers devise tests of dubious value faster than clinicians can discard them. Increasingly elaborate diagnostic algorithms have been recommended, which in reality are seldom followed. The ideal diagnostic test would reliably and safely show clot within the pulmonary arteries. Pulmonary arteriography is regarded as the final arbiter, simply because it directly images embolus within the pulmonary arteries. The assumption that life threatening emboli are not missed by pulmonary arteriography seems to hold true. However, it is worth assaying this gold standard from time to time; although false positives are difficult to prove and probably scarce, false negatives can occur despite extensive intra-vascular thrombus.

In the UK ventilation-perfusion (V/Q) scanning is more widely available than pulmonary arteriography. The PIOPED study has shown that, when the suspicion of pulmonary embolism is high, based on clinical and laboratory findings, and the V/Q scan is in the high probability category, the chance of a positive pulmonary arteriogram exceeds 95%. At the opposite extreme, a low suspicion of pulmonary embolism and a normal V/Q scan is associated with a normal arteriogram in 95% of cases. Unfortunately, most patients do not fall into these convenient categories and the problem of establishing which patients require anticoagulation without resort to pulmonary arteriography remains unresolved. It has recently been argued that patients with indeterminate V/Q scan or high V/Q probability with discordant clinical probability should undergo compression ultrasonography of the lower limbs with a view to empirical treatment if deep venous thrombosis is shown. However, a negative ultrasonographic test results in the common dilemma of whether to proceed to pulmonary arteriography or to treat with anticoagulation without confirmation of the diagnosis.

The recent recognition that modern computed tomography (CT) scanners are able to detect pulmonary emboli complicates the diagnostic algorithm. Advances in CT technology have allowed a gradual increase in the speed of data acquisition and image reconstruction. In the early 1970s each slice required up to five minutes to acquire, but by the end of the 1980s this had reduced to about two seconds. However, a complete examination of the thorax still required a breath hold for each slice, often resulting in misregistration of anatomy due to an inconstant depth of inspiration. Indeed, a pulmonary nodule, easily visible on a chest radiograph, might not be represented on any of an apparently continuous series of CT slices. Although it was appreciated that pulmonary emboli could sometimes be seen by conventional contrast-enhanced CT scanning, this was often serendipitous and depended on catching the bolus of contrast at the right time.

Current CT scanners equipped with increased computing power can capture data at an astonishing rate. With a constantly moving table top and continuous radiation output from the rotating X-ray tube, most of the thorax can be scanned during the phase of maximal intravenous contrast enhancement within a single breath hold. The resultant data set may then be reconstructed into apparently contiguous or even overlapping individual CT images. The technique has been termed spiral CT (pedantically, “helical” is a preferable term as “spiral” implies a change in diameter with each turn) or generally as continuous volume CT (CVCT) scanning. CVCT and fast scanning has allowed the detection of pulmonary emboli from the level of the pulmonary trunk out to segmental or even subsegmental pulmonary arteries.

In this issue of Thorax van Rossum and coworkers suggest a place for CVCT scanning in patients with suspected pulmonary embolism and an abnormal V/Q scan. Their study is a logical development of the earlier observations of Remy-Jardin et al. In this new study 249 patients with a clinical suspicion of pulmonary embolism underwent V/Q scanning and, in the 77 patients with an abnormal V/Q scan, CT scanning and compression ultrasonography of the legs were performed. Pulmonary embolism was detected in 32 of the 35 patients with a high probability V/Q scan. Forty two patients who had a non-diagnostic V/Q scan (defined as neither normal nor high probability) also underwent pulmonary arteriography in addition to the three patients who had a high probability V/Q scan but no evidence of emboli on the CVCT scan. Patients who had a normal V/Q scan were not investigated further. In the group of patients with non-diagnostic V/Q scans and the three patients with high probability V/Q scans but no confirmation of embolism by CT scanning, CVCT scanning (using pulmonary arteriography as the gold standard) had a sensitivity of 83% and a specificity of 97%. There was one false positive and one false negative CVCT scan. Two patients had both a negative CVCT scan and negative arteriogram. Replacing the pulmonary arteriogram with CVCT scanning in this group of patients would have resulted in failure to diagnose pulmonary embolism in two patients and an erroneous positive diagnosis in one.
Ultrasoundography of the lower limbs revealed deep vein thrombosis in 12 patients, all of whom had high probability V/Q scans and positive CVCT scans. Thus compression ultrasonography as the next investigation in all patients with abnormal V/Q scans would have made further investigation unnecessary in only 12 out of 77 (16%) cases.

In this study the performance of CVCT scanning compared with pulmonary arteriography, particularly its low false negative rate, appears impressive. The false positive rate of CVCT scanning remains unknown and inter-observer variation is also uncertain, but since a positive diagnosis relies simply on the identification of an intravascular filling defect, it is likely to be similar to pulmonary arteriography. The overall agreement between CVCT scanning and pulmonary arteriography in making the diagnosis of pulmonary embolism was good, but it would be reassuring to know that the filling defects representing pulmonary embolus correlated, defect for defect, between the two techniques. It is interesting that the authors felt it necessary to give pulmonary arteriography (the gold standard) a helping hand by interpreting the arteriograms in conjunction with the CVCT and V/Q scans.

The idea that CVCT scanning can be interrogated between an indeterminate perfusion scan and pulmonary arteriography and so cut out the need for a ventilation scan raises the spectre of yet another unwieldy diagnostic flow chart. The most important question is in which situations, if any, can CVCT replace V/Q scanning and/or pulmonary arteriography. In a recent small series the sensitivity of CVCT scanning for the presence of clot in the central pulmonary arteries was 86% and the specificity was 92%, in line with other series. However, when subsegmental vessels were included in the analysis these values fell to 63% and 89%, respectively. The conclusion was that clot in the subsegmental vessels demonstrated on pulmonary arteriography is not always reliably detected by CVCT scanning. The clinical importance of clot confined to subsegmental vessels is unknown. Whether refinements in CVCT technique can significantly improve the detection of emboli in small pulmonary arteries remains to be seen.

CVCT scanning offers two major advantages over all other non-invasive imaging tests. Firstly, it directly images intra-arterial clot whereas other tests (plain chest radiography, V/Q scanning, compression ultrasonography of the lower limb) mentioned in a recent review supply only indirect evidence of pulmonary embolism. Secondly, in contrast to pulmonary arteriography, CVCT scanning gives a bigger picture than the inside of the pulmonary arteries; as van Rossum et al have shown, this is not a diagnostic luxury. In the group with non-diagnostic V/Q scans, CVCT scanning showed other abnormalities in 24 of 42 patients which, in most cases, were likely to account for the patients’ symptoms and signs. Even in patients with high probability V/Q scans the diagnosis of pulmonary embolism was refuted by CVCT scanning in two of 35 cases (both with subsequent negative pulmonary arteriograms). Interestingly, signs of pulmonary infarction were present in nearly one third of the patients with high probability V/Q scans.

The ability to scan a large part of the pulmonary arterial tree in a single breath hold, with optimal contrast opacification, is crucial to the success of CVCT scanning in detecting pulmonary emboli. Further potential improvements include targeted reconstruction which would increase the spatial resolution of small areas of the pulmonary arterial tree, multiplanar reformations which might aid interpretation, and larger single breath hold scan volumes.

No matter how accurate a test is, it will be used in clinical practice only if it is readily available. In this respect, pulmonary arteriography is wanting in the UK, being available in only about one third of acute hospitals. Even if the earlier promises of magnetic resonance pulmonary arteriography are fulfilled, the severe shortage of magnetic resonance machine time in the UK rules out this technique for the time being. CT scanners are widely available and an increasing number of machines have continuous volume scanning capability. For this reason alone, further evaluation of the accuracy and economics of CVCT scanning in pulmonary embolism is needed. It would be premature to predict how CVCT scanning will be used in the diagnosis of pulmonary embolism, but a multicentre European trial just underway should help to establish whether it is the imaging technique of choice or just another imperfect test.

Correspondence to: Dr D M Hansell

DAVID M HANSELL

Department of Radiology,
Royal Brompton Hospital,
London SW3 6NP, UK

SIMON P G PADLEY

Department of Radiology,
Chelsea and Westminster Hospital,
London SW10 9NH, UK


Continuous volume computed tomography in pulmonary embolism: the answer, or just another test?
D. M. Hansell and S. P. Padley

Thorax 1996 51: 1-2
doi: 10.1136/thx.51.1.1

Updated information and services can be found at:
http://thorax.bmj.com/content/51/1/1.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/