Lipoxin \(\text{A}_4 \): a novel anti-inflammatory molecule?

Arachidonic acid is metabolised by the cyclooxygenase pathway to the prostaglandins and thromboxane \(\text{A}_2 \) or via one of the lipoxygenase pathways.\(^1\) Three major lipoxygenase pathways have been identified in mammalian tissue – namely, the 5-, 12-, and 15-lipoxygenases.\(^2\) The 5-lipoxygenase pathway metabolises arachidonic acid through two intermediates, 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene \(\text{A}_4 \) (LTA\(_4\)), to LT\(_B_2\) and the sulphidopeptide leukotrienes LT\(_{C\alpha}\), LT\(_{D\alpha}\) and LT\(_{E\alpha}\).\(^3\) The sulphidopeptide leukotrienes are potent spasmogens\(^4\) for non-vascular smooth muscle and may play a part in the pathogenesis of bronchial asthma.\(^5\)\(^6\)

The interactions between 5-lipoxygenase and 15-lipoxygenase on arachidonic acid metabolism have recently been studied and a new series of biologically active metabolites described.\(^1\)\(^2\)\(^3\)\(^4\)\(^5\)\(^6\)\(^7\)\(^8\)\(^9\)\(^10\) These molecules have been termed lipoxins. Unlike leukotrienes lipoxins possess a conjugated tetraene structure and the stereochemistries of the two major isomers, lipoxin (LX)\(_{A4}\) and LX\(_{B4}\), are \(\text{S}_2\), \(\text{R}_2 \), \(\text{SS}-\)trihydroxy 7,9,13-nor-11-\(\text{E}\)-icosatetraenoic acid and \(\text{S}_2\), \(\text{R}_2\), 14B, 15S-trans-8,12-nor-10-\(\text{E}\)-icosatetraenoic acid, respectively.\(^1\)\(^3\)\(^4\) It is now established that lipoxins can also be generated by an interaction between the 5- and 12-lipoxygenases, when the 12-lipoxygenase acts with a \(\text{C}_15\) specificity.

Lipoxins can be generated by human neutrophils, eosinophils, or platelets from both endogenous or exogenous substrates in vitro.\(^1\)\(^1\)\(^2\)\(^3\)\(^4\)\(^5\)\(^6\)\(^7\)\(^8\)\(^9\)\(^10\) Furthermore, using gas chromatography and mass spectrometry with selective ion monitoring, \(\text{LXA}_4\) has been detected in the bronchoalveolar lavage fluid in patients suffering from pulmonary sarcoidosis, infective bronchopneumonia, asthma, and carcinoma of the lung.\(^7\) It was not detected in normal subjects. In patients with detectable \(\text{LXA}_4\) in bronchoalveolar lavage fluid, the ratio of the concentrations of \(\text{LXA}_4\) to those of sulphotripeptide leukotrienes ranged from 1:3 to 1:9 to 1:20 (mean 19:0), indicating that \(\text{LXA}_4\) is generated in vivo.

In vitro studies with guinea pig parenchymal lung strips have shown that lipoxins exhibit contractile activity.\(^1\)\(^6\)\(^9\) \(\text{LXA}_4\) prepared by total chemical synthesis has been shown to constrict parenchymal strips over a concentration range of \(1 \times 10^{-8}\) to \(1 \times 10^{-5}\) M.\(^1\)\(^6\)\(^9\) The contractile activity of \(\text{LXA}_4\) was slow in onset and did not plateau for 20 minutes, and was approximately 10 000 times less potent than that of LT\(_{D\alpha}\). The contraction was not mediated through a secondary generation of cyclooxygenase metabolites or secondary release of sulphotripeptide leukotrienes. The activity of \(\text{LXA}_4\) may be elicited via an interaction with an LT\(_{D\alpha}\) receptor. This suggestion was further supported when it was shown that \(\text{LXA}_4\) (\(1 \times 10^{-7}\) M) prevented mesangial cell inositol triphosphate generation induced by LT\(_{D\alpha}\).\(^2\)\(^0\)

At concentrations of \(1 \times 10^{-8}\) M and \(5 \times 10^{-8}\) M \(\text{LXA}_4\) induced the generation of mesangial cell inositol triphosphate which was abolished with a sulphidopeptide leukotriene antagonist SK&F 104353. \(\text{LXA}_4\) competed with [\(\text{H}\)]LT\(_{D\alpha}\) for specific binding to cultured rat glomerular mesangial cells. In vivo it antagonised LT\(_{D\alpha}\)-induced falls in glomerular filtration rate. Dahlen and coworkers have reported that \(\text{LXA}_4\) at a concentration of \(1 \times 10^{-6}\) M was able to shift the log dose-response curve of LT\(_{C\alpha}\) on guinea pig lung strip to the right.\(^2\) Björk and coworkers showed that \(\text{LXA}_4\) at a concentration of \(1 \times 10^{-7}\) M \(\times 30 \times 10^{-8}\) M produced a dose-dependent contraction of human bronchi and antagonised LT\(_{C\alpha}\)-induced contractions.\(^2\) These studies support the view that \(\text{LXA}_4\) may act as a partial agonist at the same or similar sites as the sulphidopeptide leukotrienes.

The fact that 15-lipoxygenase is abundant in lung tissue and that \(\text{LXA}_4\) has been recovered in the bronchoalveolar lavage fluid of patients with asthma and other lung diseases suggests that \(\text{LXA}_4\) may be a potential mediator or modulator of inflammation in the lung. In a recent study eight subjects underwent inhalation challenge with \(\text{LXA}_4\),\(^2\)\(^3\) but no effect was seen on specific conductance, rate of airflow at 25% vital capacity (\(V_{25}\)), blood pressure, pulse, or asthmatic symptoms. There was, however, a significant shift of the specific conductance and \(V_{25}\) dose-response curve to the right after inhalation challenge with LT\(_{C\alpha}\) combined with \(\text{LXA}_4\) compared with that after inhalation challenge with LT\(_{C\alpha}\) alone. Thus, \(\text{LXA}_4\) may modulate LT\(_{C\alpha}\)-induced airway obstruction in vivo and may act as an endogenous sulphidopeptide leukotriene receptor antagonist.

Further evidence for the anti-inflammatory properties of \(\text{LXA}_4\) was suggested by the finding that prior exposure of neutrophils or eosinophils to \(10^{-9}\) to \(10^{-6}\) M \(\text{LXA}_4\) inhibited the chemotactic responsiveness to LT\(_{B_4}\), formyl-methionyl-leucyl-phenylalanine (FMLP), and plasma activating factor in a dose-dependent manner.\(^2\)\(^4\) The finding that \(\text{LXA}_4\) attenuated LT\(_{B_4}\)-induced neutrophil migration and plasma leakage in the hamster cheek pouch model also supports its putative anti-inflammatory role.\(^2\)\(^6\)

There is limited information on the mechanisms for the inhibiting effects of \(\text{LXA}_4\) on neutrophil functions. The inhibition of chemotactic responses was associated with a concentration-dependent inhibition of phosphoinositide hydrolysis and calcium mobilisation.\(^2\)\(^7\) There was no effect on specific binding of \([\text{H}]\)LT\(_{B_4}\) to neutrophils following preincubation with \(\text{LXA}_4\), suggesting that the mechanism of the chemotactic factor-induced phosphoinositide hydrolysis was at a post-receptor level. Structure function studies on the mechanism of inhibition of \(\text{LXA}_4\) on LT\(_{B_4}\)-induced neutrophil migration demonstrated the importance of two adjacent free hydroxy groups in either the R or the S configuration; one hydroxy group has to be in a C-6 position, but the other hydroxy group can be in either the C-5 or the C-7 position for conferment of inhibitory activity.\(^2\)\(^8\)

Successful elucidation of the mechanism(s) for the inhibitory activity of \(\text{LXA}_4\) may provide a novel therapeutic approach in inflammatory diseases.

Department of Allergy and Respiratory Medicine, UMDS, Guy's Hospital, London SE1 9RT, UK

TAK H LEE

Lipoxin A4: a novel anti-inflammatory molecule?

T H Lee

Thorax 1995 50: 111-112
doi: 10.1136/thx.50.2.111

Updated information and services can be found at:
http://thorax.bmj.com/content/50/2/111.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/