Transthoracic needle biopsy of thoracic tumours by a colour Doppler ultrasound puncture guiding device

Hao-Chien Wang, Chong-Jen Yu, Dun-Bing Chang, Ang Yuan, Yuan-Chie Lee, Pan-Chyr Yang, Sow-Hsong Kuo, Kwen-Tay Luh

Abstract

Background — Ultrasound guided transthoracic needle aspiration biopsy has recently been used to obtain specimens for histological diagnosis of pulmonary and mediastinal tumours. Conventional real time, grey scale puncture guiding devices cannot differentiate vascular structures, and clear visualisation of the needle shaft or tip within a desired target is not always possible. This study describes a new built-in colour Doppler ultrasound puncture guiding device and assessed the relative safety of transthoracic needle aspiration biopsy of thoracic tumours by grey scale or colour Doppler ultrasound guidance.

Methods — Thirty patients with radiographic evidence of pulmonary (22 patients) or mediastinal tumours (eight patients) underwent ultrasonographic evaluation and transthoracic needle aspiration biopsy by using the colour Doppler ultrasound puncture guiding device (Aloka UST 5045P-3-5). These tumours were initially examined by grey scale ultrasound, and colour Doppler imaging was then used to evaluate the number of blood vessels surrounding and within the target tumour and the possibility of visualisation of the needle shaft or needle tip during the aspiration biopsy procedure.

Results — The colour Doppler ultrasound guiding device was far superior to the grey scale device for identification of the number of vessels surrounding or within the target tumour (83% vs 20%) and for visualisation of the needle shaft or needle tip (80% vs 17%).

Conclusions — By using the colour Doppler ultrasonic puncture device, vascular structures surrounding or within the target tumour can be verified. Visualisation of the needle shaft or tip is also better. Biopsy routes can be selected to avoid puncturing vessels. This approach should be particularly helpful for guiding biopsies of mediastinal tumours, where puncturing the heart or great vessels is a potential complication.

(Thorax 1995;50:1258–1263)

Keywords: colour Doppler ultrasound, ultrasound puncture guiding device, transthoracic biopsy.
Transthoracic needle biopsy of thoracic tumours

Positive

Figure 1 (A) A 36 year old woman with a pulmonary tumour at the right apex; the grey scale ultrasound image reveals no definite blood vessel surrounding or within it. (B) The same tumour evaluated with colour Doppler ultrasound shows an artery (arrow head) just overlying the tumour. (C) The direction of puncture probe can be adjusted from -3° to 20° to preset a puncture route and depth (yellow dotted line and arrow) to avoid puncturing the vessels (arrow head). T = tumour.

...and normal prothrombin times); (4) consent to receive the procedure and were cooperative. The ultrasound examinations were performed with real time, linear, and convex ultrasound units with a 3.5 MHz transducer (Aloka SSD 2000, Aloka, Tokyo). This machine allows both grey scale and colour Doppler ultrasound imaging by using a colour Doppler mode button. Two different pairs of operators, using the same machine, performed either the grey scale or colour Doppler ultrasound study and ultrasound guided biopsy independently. The examination of the thoracic tumour was initially done with real time, grey scale ultrasound, then followed by colour Doppler imaging. The following data were obtained: (1) both longitudinal and transverse images to assess the two dimensional configuration; and (2) the number of blood vessels within 1 cm of the target tumour and those within the target tumour. The colour sensitivity setting was adjusted to a minimal range of +5 cm/s. To avoid false positive vessel visualisation, the tubular structures detected by grey scale ultrasound and colour Doppler flow signals were further confirmed to be vascular structures by spectral wave analysis.

After the initial evaluation the skin was disinfected and anaesthetised. A sterile colour puncture transducer (Aloka UST 5045P-35, Aloka, Tokyo, Japan) equipped with a guiding channel was applied. This puncture probe also possesses both grey scale and colour Doppler imaging. The aspiration biopsy was performed twice by different pairs of operators either by grey scale or colour Doppler imaging.

Figure 1 illustrates how the puncture route is selected while conducting a transthoracic biopsy. This ultrasound guided aspiration biopsy technique has been reported in previous studies. The puncture needle used was a 22 gauge Chiba needle made of steel and composed of an inner stylet with scored outer sheath. The patient was asked to hold his/her breath while the needle was inserted through the guiding channel, and aspiration biopsy was performed. The cytological specimen was stained with Riu’s method and interpreted immediately. Patients with a mediastinal tumour or pulmonary tumour without a definite histo-
A logical diagnosis after needle aspiration cytological examination underwent cutting biopsies twice by both grey scale and colour Doppler imaging with a gauge 16 Trucut needle (Top Surgical, Tokyo, Japan).

The two operators were asked whether the needle shaft or tip could be seen during the procedure. They appear as a whitish spot in grey scale ultrasound while, with colour Doppler ultrasound, a clear linear colour marking is seen (figs 2 and 3). The process of guided biopsy required 10–15 seconds to be completed. A video cassette recorder was used during the procedure to confirm the result. After needle aspiration biopsy, any possible complication was observed.

Statistical analysis was conducted using McNemar's test.

Results

Thirty patients (18 men) of mean age 51 years (range 19–78) were included in the study. The size of the tumours ranged from 1.6 x 1.9 to 9.0 x 11.4 cm. Thirty patients underwent needle aspiration biopsy and 13 patients underwent additional cutting biopsy with a Trucut needle. The demographic data are shown in table 1. The blood vessels surrounding and within the target tumour were identified by grey scale imaging in six patients (20%) with a total number of eight vessels (table 2). By colour Doppler imaging, blood vessels surrounding and within the target tumour were identified in 25 patients (83%), and eight tumours showed more than 10 blood vessels. No obvious vascular structure was identified by either method of image analysis in five patients.
Percutaneous puncture to obtain specimens for histological or microbiological study is a well established procedure. It can be performed under the guidance of fluoroscopy, ultrasound, colour Doppler imaging, or CT-guided technique.
Table 2: Results of guided biopsy with grey scale versus colour Doppler image analyses in 30 patients with thoracic tumours

<table>
<thead>
<tr>
<th></th>
<th>Mediastinal tumour (n = 8)</th>
<th>Pulmonary tumour (n = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years)</td>
<td>37</td>
<td>55</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>4/4</td>
<td>14/8</td>
</tr>
<tr>
<td>Tumour diameter (cm)</td>
<td>2.5-5 (mean 4.0)</td>
<td>1.8-10.2 (mean 5.2)</td>
</tr>
<tr>
<td>Grey scale imaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vessels visualised*</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Complications</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Colour Doppler imaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needle tip visualised</td>
<td>7</td>
<td>16**</td>
</tr>
<tr>
<td>Vessels visualised*</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Complications</td>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>

* An average of 1-3 vessels per tumour was visualised in six tumours by grey scale imaging, and of 5-2 vessels per tumour in 25 tumours by colour Doppler imaging.

** p = 0.000 grey scale versus colour Doppler imaging.

or computed tomographic scanning. There are different indications and advantages for each imaging technique. Ultrasound is advantageous in cases where the tumour or organ to be punctured cannot be seen on the radiograph, if it is to be approached from an unusual angle, or where radiography is contraindicated. The value of real time ultrasound in guiding the needle biopsy in abdominal disease is well documented. Ultrasoundography was previously thought to be of limited use in the diagnosis of chest disease because of interference from ribs or aerated lung. However, an ultrasound window can be created by atelectasis or non-aerated lung, and allows the study of underlying tumour. With improved ultrasound resolution and real time monitoring of aspiration biopsy procedures, this modality has proved to be useful for the diagnosis of thoracic lesions.

Previous studies of transthoracic needle aspiration biopsy of thoracic tumour under grey scale ultrasound guidance were complicated by haemoptysis and pneumothorax, with a complication rate of 0–8%. A conventional real time, grey scale guiding device cannot always differentiate vascular structures, and exact visualisation of the needle shaft or tip within a desired target is not always possible. There are two ways to improve safety during the puncture procedure: (1) visualisation of the needle shaft or tip; and (2) identification of blood vessels surrounding and within the target tumour. For grey scale, real time ultrasound guidance, needle visualisation can be aided by several methods including roughening or scoring the outer needle or inner stylet and placement of a guide wire through the needle. Injection of a tiny amount of saline or air as a contrast marker also improves visualisation of the tip. Although the Chiba needle we used was scored (that is, the outer needle has circumferential marks every centimetre to improve the echogenicity), in this study only in 17% of cases was the needle tip visible on the grey scale image. The needle shaft was also not able to be seen as in previous studies. The time available for transthoracic aspiration biopsy makes the injection of saline or air impractical because the patient might breathe and hence increase the risk of a complication. Visualisation of the needle tip can be difficult at times, especially if a narrow angle technique is used or a needle is inserted parallel to the ultrasound beam.

The characteristic image of vessels under real time, grey scale ultrasound is a pulsatile hypoechoic tubular structure. Hence, it is always difficult to identify vessels under grey scale imaging, particularly within the hypoechoic tumour. Colour Doppler ultrasound provides another way of solving this problem. During the past decade colour Doppler flow devices have become available and widely used. Any moving object will emit or reflect ultrasound which creates a Doppler shift. This can be modulated into a colour signal which mimics flow. With this technique, blood vessels can be easily detected. When a needle is inserted the movement of manipulation will produce the same colour signal (motion marking). Hence the needle shaft or tip is much more easily identified by colour Doppler imaging than by grey scale imaging as we have shown. Inadvertent puncture of vessels during aspiration may dilute the tissue in the needle and decrease diagnostic yield.

Ultrasound guided fine needle aspiration of mediastinal tumours has a low sensitivity for precise diagnosis because of pleomorphic histology. This can be improved by core biopsy with a Trucut needle. Puncturing great vessels or even cutting the vessels within the mediastinum can cause serious complications. The colour Doppler guiding device should allow cutting needle biopsies to be performed even more safely, although we experienced no complications with either technique in this study and yields were identical.

Three types of ultrasound guiding devices are available, namely: (1) a sonographic transducer with built-in needle slots; (2) a transducer equipped with an attachable stretcher guide; and (3) a free hand approach, viewing through a transducer without a guide. The built-in needle slot ultrasound transducer is more suitable for guiding transthoracic biopsy as has been discussed previously.

Since the colour Doppler puncture guiding device provides better real time control of the position of the needle and the identification of location and number of vessels, an improvement in safety is expected. However, the absence of any complications in this study does not allow us to conclude that the colour Doppler puncture guiding device is, in fact, safer than the grey scale device. A larger controlled comparative study is needed to verify this point.

Transthoracic needle biopsy of thoracic tumours by a colour Doppler ultrasound puncture guiding device

22 Grant EG, Richardson JD, Smirnitopoulos JG, Jacobs NM. Fine needle biopsy directed by real-time sonography: technique and accuracy. AJR 1983;141:29-32.
Transthoracic needle biopsy of thoracic tumours by a colour Doppler ultrasound puncture guiding device.

H C Wang, C J Yu, D B Chang, A Yuan, Y C Lee, P C Yang, S H Kuo and K T Luh

Thorax 1995 50: 1258-1263
doi: 10.1136/thx.50.12.1258

Updated information and services can be found at:
http://thorax.bmj.com/content/50/12/1258

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/