The endocrine lung and its response to hypoxia

J R Gosney

The endocrine system of the lungs, in common with other components of the diffuse endocrine system, comprises a dispersed population of peptide and amine secreting cells which acts in concert with the nervous system and systemic mechanisms of endocrine control to maintain homeostasis.1 Of all the roles proposed for the pulmonary endocrine system – and very little is known for certain – that of monitoring the concentration of gases in the airways has been most often suggested. The purpose of this paper is to review the evidence for this putative function.

Morphological aspects
As knowledge of the structure of the pulmonary endocrine system has increased, it has become clear that it would be ideally suited to have chemoreception as one of its functions. Over 40 years ago Fröhlich1 suggested that the arrangement of some pulmonary endocrine cells as innervated clusters, which he thought resembled taste buds, made monitoring of intrapulmonary gases a likely role. Numerous studies in lower mammals have since served to support the possibility. In such species these innervated clusters, now generally known as neuroepithelial bodies,2 are the predominant form of arrangement of pulmonary endocrine cells and are evenly distributed although concentrated where airways branch.45 They have a complex innervation, involving both afferent and efferent nerve endings,57 and relay in and are modulated by the vagus.89

Acute short term hypoxia
The first direct evidence of a chemoreceptive role for neuroepithelial bodies came when Lauweryns and Cokelaere10 described how, in young rabbits, exposure of these structures to acute hypoxia led to their degranulation. Later studies demonstrated how this degranulation of neuroepithelial bodies was specific for hypoxia, occurring in response to neither hyperoxia, hypercapnia, nor hypoxaemia,11-14 and how it induced synaptic activity in the nerve endings in contact with them.15 Most recently Cutz et al.16 have shown an exocytotic response to acute hypoxia of isolated fetal rabbit neuroepithelial bodies in culture, confirming the phenomenon previously shown only in vivo.

The consequences of any centripetal vagal transmission resulting from this hypoxia-induced receptor activity are quite unclear. Almost any aspect of pulmonary physiology could theoretically be affected by initiation of activity in reflex arcs, including vascular or bronchial tone and secretion of mucus or other products of bronchial glands and pulmonary epithelium. Presently, however, nothing is known about the efferent limb of the response to acute hypoxia.

Chronic unremitting hypoxia
The role of the pulmonary endocrine system in mediating adjustments to chronic, unremitting hypoxia lasting from weeks to years – as opposed to that discussed above, which is acute in onset and of a duration measured in minutes – is uncertain. It is seen, of course, as an important consequence of a number of common pulmonary disorders, most particularly in chronic bronchitis and emphysema. Unfortunately, changes in the pulmonary endocrine system in lungs affected by diseases like this, and which might be due to hypoxia per se, are impossible to separate from those caused by other aspects of the pathology of such conditions, particularly the inflammation and repair and regeneration of the tissues of the lung following pulmonary injury. There are, however, two situations in which the response of the pulmonary endocrine system to unremitting hypoxia in relative isolation can be studied. The first is in the laboratory, where animals can be exposed to hypocbaric or normobaric hypoxia in chambers. The second is in the naturally hypoxic environment of the world’s high places.

STUDIES IN THE LABORATORY
No consensus has emerged concerning the effects of hypoxia on the pulmonary endocrine system of animals exposed to reduced levels of oxygen in the laboratory. Some have described reduced numbers of pulmonary endocrine cells under such circumstances,1718 some report increased numbers,1920 and others describe no change in either direction.20-23

Unfortunately, the species used, the duration and severity of hypoxia, and the methods of identifying and quantifying pulmonary endocrine cells varied widely between these studies, so they are impossible to compare meaningfully. More subtle studies which examined the effects of hypoxia on one of the products of these cells – calcitonin gene-related peptide – have revealed an interesting effect, although its significance is presently uncertain. In these, exposure of rats for 21 days to an environment containing just 10% oxygen caused an increase in the concentration of this peptide in pulmonary endocrine cells of the order of 15–20%,2124 a change which was subsequently shown to result from a decrease in its release rather than an increase in its synthesis.25
STUDIES AT HIGH ALTITUDE
In 1977 Taylor described how the lungs of six rabbits from the Peruvian Andes contained more pulmonary endocrine cells, especially neuroepithelial bodies, than those of controls from sea level, a finding confirmed more recently in guinea pigs from the same location. An investigation of a number of species from different altitudes in the Himalayas showed no such differences, although numbers were small and the differences between the altitudes at which they had lived were not great.

In 1983 Memoli et al. published, in abstract form, the results of a study of pulmonary endocrine cells in the lungs of 20 lifelong human residents of La Paz, Bolivia; increased numbers were reported in six cases. Unfortunately, a recent exhaustive investigation of six pairs of widely sampled lungs from similar subjects failed to show any differences in the number, content, or distribution of pulmonary endocrine cells when compared with the lungs of subjects from sea level, despite the fact that in three subjects there was pulmonary vascular remodelling typical of that seen in residents at high altitude.

Conclusions
There seems little doubt that acute hypoxia excites activity in neuroepithelial bodies, although its consequences are unknown. Whether exposure to the chronic hypoxia that occurs in certain cardiorespiratory diseases and at natural high altitudes has any effects on the pulmonary endocrine system, as might be expected to occur if hypoxia chemoreception was one of its functions, is unclear. There is evidence, however, that such prolonged exposure might alter the dynamics of the release of its secretory products and sometimes lead to an increase in the number of neuroepithelial bodies.
The endocrine lung and its response to hypoxia.

J R Gosney

doi: 10.1136/thx.49.Suppl.S25

Updated information and services can be found at:
http://thorax.bmj.com/content/49/supplement/S25.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/