Rise in total IgE as an indicator of allergic bronchopulmonary aspergillosis in cystic fibrosis

J L Marchant, J O Warner, A Bush

Abstract
Background — Allergic bronchopulmonary aspergillosis is a serious complication of cystic fibrosis and may be difficult to diagnose. The aim of this study was to define the usefulness of measuring total IgE compared with other major criteria in the diagnosis of allergic bronchopulmonary aspergillosis in children with cystic fibrosis.

Methods — A retrospective analysis was carried out of the case records of 160 children attending a tertiary referral paediatric cystic fibrosis clinic.

Results — Sixteen children had a total IgE level above 500 IU/mL. Eleven children had six or more other major criteria and were considered to have allergic bronchopulmonary aspergillosis. These 11 children had a fourfold rise in IgE in association with clinical deterioration. A further child had a fourfold rise in IgE to 341 IU/L, and was also thought to have allergic bronchopulmonary aspergillosis. Eleven had a fall in IgE with successful treatment; one patient died with uncontrolled disease. Only one of these 12 children had negative precipitins to Aspergillus fumigatus. The five children with a raised IgE not thought to have bronchopulmonary aspergillosis had four or fewer major criteria and were not treated; none had positive precipitins.

Conclusions — A fourfold rise in total IgE, particularly to above 500 IU/mL, is strongly suggestive of the diagnosis of allergic bronchopulmonary aspergillosis in children with cystic fibrosis. The measurement of total IgE has the merit of being simple to perform and objective. Positive aspergillus precipitins provide useful confirmatory evidence. These two criteria, taken in conjunction with clinical deterioration and new radiological shadowing, allow simplification of the diagnosis of allergic bronchopulmonary aspergillosis in cystic fibrosis.

(Thorax 1994;49:1002–1005)

Allergic bronchopulmonary aspergillosis (ABPA) is a serious complication of cystic fibrosis but its prevalence is disputed, ranging from 0% to 11% in the published literature.1–4 Major and minor diagnostic criteria (table 1) have been proposed,5–8 but have the disadvantage of being relatively non-specific in this setting.6 For example, chest radiographic shadows are common and there are many other reasons for a deterioration in respiratory symptoms in such children.6–8 In our clinic2 the prevalence of a positive culture for Aspergillus fumigatus in sputum is 30%, a positive skin prick test is 30%, a positive specific IgE to Aspergillus fumigatus (RAST) is 27%, and positive IgG precipitin lines is 12% in children with stable cystic fibrosis and nothing to suggest ABPA, underscoring the lack of specificity of these criteria. One group even discarded these criteria and proposed that the diagnosis of ABPA should be considered in children with new radiographic shadows which have not responded to intravenous antibiotics.6 The importance of detecting a high level of IgE has become apparent since ABPA was first described in 1965.8,9 On the other hand, atopy and a high level of IgE are common findings in cystic fibrosis.7–11 Making the diagnosis of ABPA is important because of the risk of deterioration if it is not treated; conversely, unnecessary treatment with oral corticosteroids should be avoided. We have therefore carried out a study to determine the significance of a high level of IgE in cystic fibrosis and to ascertain its use (if any) as an aid to the diagnosis of ABPA.

Methods
A total of 160 children attended our paediatric cystic fibrosis clinic for their annual assessments (80 boys and 80 girls, age range four months to 17 years). In all cases the diagnosis had been established by duplicate measurements of sodium levels in sweat of more than 70 mmol/l on more than 100 mg of sweat2 together with a compatible clinical history.

Routine investigations performed annually include chest radiography; ventilation lung scans or (in older children) pulmonary function tests; routine haematology and biochemistry;

Table 1 Diagnostic criteria for allergic bronchopulmonary aspergillosis

<table>
<thead>
<tr>
<th>Major criteria</th>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary infiltrates</td>
<td>Positive sputum culture to Aspergillus fumigatus</td>
</tr>
<tr>
<td>Increased serum total IgE</td>
<td>Brown plugs in sputum</td>
</tr>
<tr>
<td>+ ve skin prick tests to Aspergillus fumigatus</td>
<td>Late skin test reaction</td>
</tr>
<tr>
<td>+ ve RAST to Aspergillus fumigatus</td>
<td></td>
</tr>
<tr>
<td>Presence of precipitins to Aspergillus fumigatus</td>
<td></td>
</tr>
<tr>
<td>Reversible bronchoconstriction</td>
<td></td>
</tr>
<tr>
<td>Blood eosinophilia</td>
<td></td>
</tr>
<tr>
<td>Central bronchiectasis</td>
<td></td>
</tr>
</tbody>
</table>

Reprint requests to:
Dr A Bush.
Received 28 February 1994
Returned to authors 6 May 1994
Revised version received 13 June 1994
Accepted for publication 16 June 1994

Department of Paediatric Respiratory Medicine, Royal Brompton National Heart and Lung Hospital, London SW3 6NP
J L Marchant
A Bush

Department of Child Health, University of Southampton, UK
J O Warner

(Thorax 1994;49:1002–1005)
immunoglobulins A, M, G and E; Aspergillus fumigatus RAST using the standard scoring system from 0 to 4; serum precipitins to *Aspergillus fumigatus* using double immunodiffusion of unconcentrated serum with Bencard standard antigens 1 and 2. Sputum (when available) is cultured on every visit. Full reassessment is performed at the time of any respiratory deterioration.

Results

Sixteen children with a total IgE of more than 500 IU/ml on at least one occasion were identified, together with a further child who had a fourfold rise in IgE to 341 IU/ml. The results of testing for *Aspergillus fumigatus* RAST and precipitins, skin prick tests (immediate sensitivity), and sputum culture for *Aspergillus fumigatus* in these 17 children are shown in Table 2. These children could be divided into two groups.

Twelve (7.5%) were considered to have ABPA, having evidence of clinical deterioration and meeting at least six of the major criteria listed in Table 1 (group 1 in Table 2). Additionally, the total IgE levels showed at least a fourfold rise from their baseline level to above 500 IU/ml. One child (patient 3) who was considered on other standard grounds to have ABPA had a rise in IgE to only 341 IU/ml, but this constituted a greater than fourfold rise. In 11 children IgE results were available after treatment with oral prednisolone, 1 mg/kg. There was a fall in IgE which tracked the clinical and radiological response to treatment. The exception was patient 8 who continued to deteriorate despite administration of high-dose steroids, oral itraconazole, and nebulised amphotericin. She died of respiratory failure and her total IgE was >10 000 IU/ml just before her death.

Five other patients (group 2 in Table 2) had a total IgE >500 IU/ml. All had four or fewer other major criteria for ABPA. Two failed to show a fourfold rise in total IgE. None of them had positive precipitins to *Aspergillus fumigatus*. The significance of these results is discussed below.

Discussion

The prevalence of ABPA is uncertain, partly because of the lack of specificity of the diagnostic criteria. Of the major criteria (Table 1) parenchymal shadowing on the chest radiograph, central bronchiectasis, and reversible bronchostenosis may be manifestations of uncomplicated cystic fibrosis or an infective exacerbation, and hence we have reviewed our experience to try to refine the diagnosis.

We found that children with cystic fibrosis who had a total IgE level >500 IU/ml could be divided into two groups. Group 1 (n = 11) had a more than fourfold rise in IgE in association with at least six major criteria for ABPA and symptomatic deterioration. A further child had

Table 2 Details of the patients studied. Those in group 1 were thought to have ABPA and those in group 2 had a raised IgE titre but were thought not to have ABPA.

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex</th>
<th>Age</th>
<th>IgE before diagnosis</th>
<th>IgE before treatment</th>
<th>IgE after treatment</th>
<th>RAST</th>
<th>Serum precipitins to A. fumigatus</th>
<th>Skin prick test</th>
<th>Eosinophils >0.4</th>
<th>Chest radiograph*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>9</td>
<td>ND</td>
<td>2117</td>
<td>1279</td>
<td>+ve</td>
<td>-ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>10</td>
<td>13</td>
<td>560</td>
<td>66</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>8</td>
<td>37</td>
<td>341</td>
<td>74</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>12</td>
<td>83</td>
<td>1660</td>
<td>677</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>8</td>
<td>970</td>
<td>2456</td>
<td>Died</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>12</td>
<td>237</td>
<td>1498</td>
<td>129</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>9</td>
<td>1360</td>
<td>7756</td>
<td>ND</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>10</td>
<td>502</td>
<td>5736</td>
<td>2678</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>13</td>
<td>806</td>
<td>3780</td>
<td>936</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>17</td>
<td>990</td>
<td>5330</td>
<td>737</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>11</td>
<td>219</td>
<td>2905</td>
<td>97</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>14</td>
<td>1050</td>
<td>3108</td>
<td>2152</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>Group 2:</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>7</td>
<td>248</td>
<td>699</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>12</td>
<td>299</td>
<td>3993</td>
<td>+ve</td>
<td>ND</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>13</td>
<td>59</td>
<td>1287</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>12</td>
<td>206</td>
<td>784</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>4</td>
<td>182</td>
<td>919</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
</tbody>
</table>

ND = not done; IgE = total IgE (normal <150 IU/ml); RAST = radioallergosorbent test for specific IgE antibodies.

* Typical wedge shadows on chest radiograph.

dExpectations were met for 1 and 2 are measurements made one year apart on annual review.

The prevalence of ABPA is uncertain, partly because of the lack of specificity of the diagnostic criteria. Of the major criteria (Table 1) parenchymal shadowing on the chest radiograph, central bronchiectasis, and reversible bronchostenosis may be manifestations of uncomplicated cystic fibrosis or an infective exacerbation, and hence we have reviewed our experience to try to refine the diagnosis.

We found that children with cystic fibrosis who had a total IgE level >500 IU/ml could be divided into two groups. Group 1 (n = 11) had a more than fourfold rise in IgE in association with at least six major criteria for ABPA and symptomatic deterioration. A further child had
a fourfold rise in IgE to 341 IU/ml with seven major criteria for the diagnosis, and was also considered to have ABPA. While accepting that there is no definitive diagnostic test, we felt that ABPA was the cause of deterioration and treated these children with oral prednisolone, 1 mg/kg. Others have used doses as high as 2 mg/kg. It is preferable to use the non-enteric coated preparation. The children improved clinically with a fall in total IgE concomitant with radiological improvement. This provided further evidence to support the diagnosis but, since some of our patients had also been given intravenous antibiotics, some diagnostic uncertainty remained. Using our diagnostic criteria, however, the prevalence of ABPA in our clinic population (12/160, 7.5%) was similar to other published series.

Supporting evidence for the diagnosis may come from measurements of RAST and precipitins to Asperillus fumigatus. All the patients in group 1 had a positive RAST; implying that a negative RAST either excludes or casts strong doubts on the diagnosis. However, all the patients in group 2 also had a positive RAST, reducing its predictive value. Precipitins were positive in 11 out of 12 of the children in group 1, but in none of the patients in group 2 in whom it was sought. Thus positive precipitins, particularly if they were previously negative, may be a stronger pointer to the diagnosis of ABPA in combination with a high or rapidly rising IgE.

The children in group 2 with a raised IgE level had four or fewer of the criteria for ABPA; none was treated with prednisolone. Patients 13 and 16 were completely stable between the two measurements of IgE, and the increases were attributed to known atopic status. Of note was the absence of a fourfold rise in IgE level. Patient 14 had a steep rise in IgE with no clinical or radiological features of ABPA. He received no treatment and a year later his IgE level had reverted to below 500 IU/ml with no change in clinical status. We have no explanation for this result. Patient 15 came to the clinic with minimally increased respiratory symptoms and had a segmental consolidation on the chest radiograph. He was treated with oral antibiotics and, by the time the IgE result was to hand, he had recovered clinically and radiologically. He was given no further treatment and subsequently his IgE level reverted to normal. Patient 17 had a raised IgE level at routine annual assessment. His chest radiograph was normal which does not exclude the diagnosis but his krypton ventilation scan revealed that the right upper lobe was not ventilated. He was treated with oral antibiotics but no other additional medication and his IgE levels fell to normal. A subsequent ventilation scan was also normal. It is possible that these two patients had subclinical episodes of ABPA which resolved spontaneously, a sequence which has been described before in cystic fibrosis. However, simple mucus plugging or infection cannot be excluded.

Asperillus fumigatus has the capacity to cause numerous pulmonary problems including asthma, ABPA, mycetoma, and invasive disease. It has the capacity to grow at body temperature, and hence within the airways of patients. The consequence may be the exposure of patients to a heavy antigen load, generating an intense humoral immune response. Additionally Asperillus fumigatus produces at least one proteinase which may damage bronchial epithelium. This intense response may set up cycles of further obstruction, inflammation, and lung damage. In common with others we found that ABPA is not rare in the cystic fibrosis population, often requires high doses of prednisolone for control, and frequently relapses. Relapse of ABPA was associated in group 1 with a further abrupt rise in IgE level (figure), confirming the diagnostic utility of this measurement. These findings accord with the results of others, although less stringent criteria have been proposed.

IgE as an indicator of allergic bronchopulmonary aspergillosis in cystic fibrosis

Rise in total IgE as an indicator of allergic bronchopulmonary aspergillosis in cystic fibrosis.

J L Marchant, J O Warner and A Bush

Thorax 1994 49: 1002-1005
doi: 10.1136/thx.49.10.1002

Updated information and services can be found at:
http://thorax.bmj.com/content/49/10/1002

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/