Effect of air pollution on the prevalence of asthma and allergy: lessons from the German reunification

An increase in the prevalence of bronchial asthma has been reported in many countries, but there is still no conclusive explanation for these observations. The possible contribution of air pollution to atopic and bronchial asthma has gained increasing attention in recent years, and this topic has been addressed in several extensive reviews. Many detailed experimental and epidemiological reports are now available which have focused on the effects of sulphur dioxide (SO2), airborne particulates, nitrogen dioxide (NO2), and ozone on the airways of asthmatic subjects and normal populations. We will briefly summarise the effects of these pollutants on respiratory health to improve the understanding of the epidemiological data that have become available following the German reunification. Reunification offered the opportunity to compare two populations that have been exposed to highly different levels of air pollution.

Several controlled exposure studies have shown that asthmatic subjects are more sensitive to the bronchoconstrictor potency of SO2 than are healthy subjects. Bronchoconstriction can occur in some asthmatic individuals during exercise at concentrations as low as 700 µg/m3 and is observed in many at about 1400 µg/m3. In contrast, healthy volunteers do not experience bronchoconstriction below concentrations of about 2700 µg/m3. Pollution episodes in the Meuse valley (Belgium) in 1930, in Donora (USA) in 1948, and in London in 1952 demonstrated detrimental effects on respiratory mortality related to high levels of SO2 (daily average about 4000 µg/m3), acid aerosols, and smoke. This was particularly true for patients with pre-existing asthma (in Meuse and Donora) or bronchitis and asthma (London). Several epidemiological investigations have confirmed the positive association between respiratory morbidity and SO2 or particulate matter at much lower levels in both adults and children. For example, a positive relationship between wheeze, peak flow impairment, and bronchodilator use on the one hand, and SO2 levels (highest daily average, 105 µg/m3), smoke (range 2–120 µg/m3), and particulate matter on the other, has recently been found in children with chronic respiratory symptoms. Even moderately elevated concentrations of SO2 and particulate matter during winter time may therefore have an impact on respiratory diseases in susceptible populations.

Much experimental and epidemiological work has also been performed on the respiratory effects of NO2. At concentrations of 200–500 µg/m3 this pollutant has been shown to cause an increase in bronchial responsiveness to external stimuli in some subjects with asthma, although other authors were unable to detect such effects at these or much higher concentrations. Similarly, in healthy subjects an increase in airway responsiveness has been observed at about 4000 µg/m3 NO2 by some but not by others. No consistent effects on airway tone have been reported at these or lower concentrations. Several cross sectional studies have revealed a higher prevalence of respiratory symptoms in children and adults from homes where gas was used for cooking (implying peak NO2 levels of 400–800 µg/m3), suggesting an effect of indoor NO2 on respiratory health. In addition, an association between the annual average concentration of NO2 (11–51 µg/m3) and the duration of symptomatic respiratory episodes has been reported in a random sample of preschool children. At present, however, studies do not permit unique conclusions to be drawn on the role of NO2, nor do they clearly indicate whether subjects with asthma are more susceptible to the adverse effects of NO2 than normal subjects.

In experimental settings ozone has been shown to cause impairment of lung function at levels of 160–240 µg/m3 during prolonged exercise whereas the effective concentrations during shorter exposures range between 400 and 800 µg/m3. The typical functional changes following exposure to ozone are a transient restrictive ventilatory impairment and an increase in bronchial responsiveness to methacholine and histamine. Only few data from controlled exposure studies in asthmatic subjects are available, some of them suggesting a slightly increased ozone sensitivity when compared with healthy individuals. In a large sample of subjects we found that interindividual variation in acute alterations of lung function and airway responsiveness after ozone breathing were much more pronounced than differences in response between healthy subjects and patients with rhinitis or asthma. Epidemiological studies have shown positive associations between respiratory illness and ambient ozone levels mainly in children, recent studies coming from Tennessee, California, and Mexico. They indicate that long term exposure to high ambient ozone concentrations (45% of days > 120 µg/m3) may be associated with persistent bronchial hyperresponsiveness. Changes in lung function on a daily basis relate in a negative fashion to ambient ozone levels and an individual response may or may not be dependent on pre-existing airway disease.

The German reunification in 1989 provided a challenging opportunity to study two genetically similar populations who, over more than 40 years, have been exposed to different levels of environmental pollution as well as different living conditions. The East German industrialised areas, especially in Saxony and Thuringia, are characterised by high concentrations of SO2 and particulate matter—for example, average monthly levels of SO2 and particulate matter in Leipzig and Erfurt (East Germany) during winter were about 300 µg/m3 and 120 µg/m3, respectively, whereas the values in a moderately industrialised city in West Germany such as Munich were always below 50 µg/m3 (SO2) and 80 µg/m3 (particulate matter). Conversely, NO2 levels tended to be higher in the West German than in the East German cities. Several investigations are still under way and few data have yet been published in international journals; we will therefore briefly review the trends indicated by the available data.

Krämer and coworkers performed a cross sectional study on respiratory symptoms and doctors’ diagnoses in more than 4000 preschool children in several towns in East and West Germany. First results indicate higher prevalences of “frequent cough” and lower prevalences of doctor diagnosed asthma and rhinitis in children from the East German cities than in children from West Germany. These findings are compatible with a recent study reported by von Mutius et al in which...
6081 children in Leipzig (East Germany) and Munich (West Germany) were asked for their lifetime prevalence of asthma and allergic disorders, and bronchial responsiveness was assessed by cold air inhalation challenge. The lifetime prevalence of doctor diagnosed asthma was 7·3% in Leipzig and 9·3% in Munich, and prevalence of wheezing was 20% and 17%, respectively. The prevalence of diagnosed bronchitis was higher in Leipzig (30·9%) than in Munich (15·9%). No difference was found in the prevalence of bronchial hyperresponsiveness to cold air. Interestingly, hay fever (2·4% vs 8·6%) and typical symptoms of rhinitis (16·6% vs 19·7%) were reported less frequently in Leipzig than in Munich. In 7200 randomly selected subjects aged between 20 and 44 years in the two German centres of the EC Respiratory Health Survey—Erfurt (East Germany) and Hamburg (West Germany)—the answers to screening questions revealed a similar tendency.33 Of the subjects from Erfurt 1·3% reported an attack of asthma within the last year and 13·2% answered positively when asked whether they had suffered from nasal allergies such as hay fever. The respective figures for Hamburg were considerably higher at 3·0% and 22·8%. These data will be compared with the results of lung function tests, methacholine challenges, skin tests, and specific IgE determinations. If one considers that the question on, for example, asthma has a specificity of 90% with respect to positive histamine challenge,34 our figures lend support to the perplexing impression that the true prevalence of asthma seems to be lower in East than in West Germany. The final evaluation will take into account the influences of individual risk factors such as smoking, occupational exposure, and other epidemiologically relevant predictors for respiratory disease.

An explanation remains to be found for the apparently higher prevalence of atopic and asthmatic disorders in West than in East Germany. Since asthma in children and adolescents is most often of atopic origin and is closely linked to bronchial hyperresponsiveness, the studies from East and West Germany suggest that long term exposure to high levels of SO\textsubscript{2} and particulate matter does not increase the prevalence of asthma or allergy. Animal studies which have shown facilitated sensitisation after low level SO\textsubscript{2} exposure35 possibly do not adequately reflect the conditions met in human subjects.

The higher prevalence of allergic sensitisation in West Germany is further supported by the data on IgE antibodies against important indoor allergens such as Dermatophagoides pteronyssinus, D. farinae, and cat which have been obtained in 901 vocational pupils from Leuna (East Germany) and Duisburg (West Germany). The prevalence of antibodies against these mites and cat was more than fivefold and threefold, respectively, higher in Duisburg than in Leuna.36 No such differences were found in sensitisation against outdoor allergens such as rye, Timothy grass, birch, and mugwort. One may therefore speculate that “western” housing styles with decreased ventilation, higher humidity, and probably higher numbers of pets may be more important for the prevalence of asthma and atopy than “classical” outdoor pollutants such as SO\textsubscript{2} and particulate matter. These speculations may also provide a clue to the extraordinarily high rates of asthma and atopy found in New Zealand, a country which also seems to have a perfect climate for allergens. If this line of reasoning is true, measures must be taken to reduce the indoor allergen burden and thereby decrease the risk of atopy and asthma.37 As an alternative explanation it is tempting to relate the increased prevalence of allergic disorders in Western cities to the much heavier traffic exhausts.

It has been hypothesised that the allergenicity of antigens can be enhanced by pollutants. Ishizaki and coworkers\textsuperscript{38} found the highest incidence of cedar polinosis among residents living along an intercity main road with heavy automobile traffic, whereas residents in the cedar forests with less automobile traffic showed a lower incidence. It is not clear, however, that confounding factors have been adequately taken into account. Krämer and coworkers\textsuperscript{39} reported an elevated frequency of positive RAST classes to pollen allergen in those children exposed for more than one hour per day to traffic. Others have reported a more frequent sensitisation to aerallergens in polluted than in non-polluted regions, and specific IgE levels were higher in subjects from urban areas than in those from rural areas.40 It has recently been shown experimentally that short term inhalation of 240 μg/m\textsuperscript{3} ozone tended to increase bronchial responsiveness to inhaled allergens in a small group of asthmatic subjects.41 Such an effect has not been found at the level of the nose,42 suggesting different susceptibility or different mechanisms at these levels. Although animal studies suggest that allergic sensitisation could be increased by previous exposure to ozone,4 this effect has not been consistently observed after long term exposure to high ozone concentrations.43

What can be learned from these studies? Asthmatic patients show increased susceptibility to the adverse respiratory health effects of most air pollutants. This is true for SO\textsubscript{2} and probably, to a lesser extent, for NO\textsubscript{x} and ozone. The question whether air pollution can cause asthma and atopy is not yet resolved. Studies from East and West Germany suggest that SO\textsubscript{2} and smoke do not increase allergic sensitisation under real life conditions.32,33 If ozone exposure was a major risk factor for atopy and asthma a substantially higher rate of these disorders would be expected in cities like Los Angeles, which is not the case. Multicentre cross sectional studies which cover a broad variety of risk factors for atopy and asthma such as the EC Respiratory Health Survey are therefore clearly warranted and will shed light on the still open question as to what extent indoor and outdoor factors are relevant for the prevalence and severity of these disorders. Skilful combination of epidemiological studies and controlled human exposure experiments seems to be more promising than further extension of data derived from laboratory animal studies.

H MAGNUSSEN

D JORRES

Krankenhaus Grosshadern, Zentrum für Pneumologie und Thoraxchirurgie, LVA und Hansestadt Hamburg, Germany

D NOWAK

Department of Occupational Medicine, University of Hamburg, Germany

Reprint requests to: Dr H Magnusen, Krankenhaus Grosshadern, Währdenstr 80, D-22927 Grosshadern, Germany

7 Wardlaw AJ. The role of air pollution in asthma. Clin Exp Allergy 1993;23:81-96.
German reunification and the prevalence of asthma and allergy


22 Horstman DH, Folinsbee LJ, Ives FJ, Abdul-Salam S, McDonnell WF. Ozone concentration and pulmonary response relationships for 6-6 hour exposures with five hours of moderate exercise to 0.08, 0.10, and 0.12 ppm. Am Rev Respir Dis 1990;142:1158-63.


Effect of air pollution on the prevalence of asthma and allergy: lessons from the German reunification.
H Magnussen, R Jörres and D Nowak

Thorax 1993 48: 879-881
doi: 10.1136/thx.48.9.879

Updated information and services can be found at:
http://thorax.bmj.com/content/48/9/879.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/