Failure of frusemide to increase production of prostaglandin E₂ in human nasal mucosa in vivo

Joaquim Mullol, Isabel Ramis, Jordi Prat, Joan Roselló-Catafau, Antoni Xaubet, Carlos Piera, Emili Gelpi, César Picado

Abstract

Background It has been suggested that inhaled frusemide protects subjects with asthma against bronchoconstriction by enhancing the synthesis of prostaglandin E₂ (PGE₂). To evaluate this hypothesis the effect of frusemide on PGE₂ production from nasal mucosa was studied.

Methods Two main arachidonic acid metabolites produced by epithelial cells, PGE₂ and 15-hydroxy 5,8,11,13-eicosa-tetraenoic acid (15-HETE), were measured by radioimmunoassay in nasal secretions obtained by nasal lavages with saline. Eleven healthy volunteers were randomly assigned to two study days, one week apart, in a double blind crossover study. Nasal instillation with three increasing doses of frusemide (5, 10, and 20 mg) or placebo was carried out at intervals of 15 minutes. Nasal lavages were performed immediately before nasal instillations and 15, 30, and 60 minutes after the last instillation.

Results Baseline concentrations of 15-HETE were at least six times higher than PGE₂. No differences between frusemide and placebo were detected either on PGE₂ or 15-HETE release.

Conclusions The findings do not support the hypothesis that the antiasthmatic effect of frusemide may be due to increased synthesis of PGE₂ or release in the respiratory mucosa.

(Thorax 1993;48:260-263)

Frusemide has been reported to inhibit the bronchoconstrictor responses to various stimuli such as exposure to allergen, distilled water, adenosine, and sodium metabisulphite, and exercise.¹-⁵ The mechanisms involved in this non-specific, protective effect of frusemide are not clear. As bronchospastic responses induced by all these stimuli have been linked to an excessive liberation of bronchoconstrictor agents from inflammatory cells, it has been suggested that frusemide may exert its protective effect by modifying the release of chemical mediators. Frusemide, a loop diuretic, increases the production of prostaglandin E₂ (PGE₂) in the kidney and this action has been related to its diuretic effect.⁶ PGE₂ is a potent immunomodulator and a moderate bronchodilator. It has been proposed that frusemide might prevent bronchoconstriction by enhancing PGE₂ synthesis.⁷ Furthermore, it is interesting to note that the protective effect of frusemide on bronchoconstriction is similar to the effect of disodium cromoglycate, a drug that also prevents asthma attacks induced by exposure to allergen, exercise, and distilled water.⁸-¹⁰ In a recent study, the authors reported that disodium cromoglycate effectively attenuates the release of 15-hydroxy 5,8,11,13-eicosa-tetraenoic acid (15-HETE) after allergen provocation of the nasal mucosa.¹¹ This study also reported a decrease in basal 15-HETE release from nasal mucosa by disodium cromoglycate in both rhinitic and healthy subjects.¹¹ As comparable results for both frusemide and cromoglycate have been found, we considered that frusemide, like disodium cromoglycate, might protect against inflammatory reactions by inhibiting the release of 15-HETE.

Frusemide increases diuresis in healthy subjects and it is therefore reasonable to speculate that it might also exert its effects on the release of arachidonic acid metabolites in the upper airway of healthy subjects. Because an accurate knowledge of the changes induced by frusemide in the production of chemical mediators in healthy subjects may help to better understand the mechanisms involved in its protective effect on bronchospastic reactions, we have carried out a study to evaluate the effects of frusemide on the release of the main eicosanoids (15-HETE and PGE₂) produced by the respiratory epithelium.

Subjects and methods

POPULATION
Eleven healthy volunteers (eight men and three women) aged 35 (SD 5) years participated in the study. They were recruited from the staff of our institution. The criteria for inclusion were current good health and absence of any treatment at the time of the study. None of the volunteers had had a respiratory infection for at least three weeks and they did not take any anti-inflammatory medication during the week before the study. All subjects gave informed consent to participate in the study, which was approved by the research committee of our institution.
Failure of frusemide to increase production of prostaglandin E₂ in human nasal mucosa in vivo

NASAL LAVAGE

Nasal lavages were carried out according to the method described by Naclerio and coworkers. Briefly, with the head tilted backward, 8 ml of normal saline (0·9% NaCl) was instilled into the nose (4 ml in each nasal cavity) while the subject refrained from breathing and swallowing. After about 10 seconds, the subjects expelled the mixture of saline and nasal secretions into polypropylene tubes, which were stored at −70°C until extraction. Nasal lavage recoveries in the present study were 5·5 (SD 0·1) ml (70 (SD 1)%).

RADIOIMMUNOASSAY OF ARACHIDONIC ACID METABOLITES

PGE₂

Extraction of PGE₂ from nasal lavages was performed according to a method previously described. Nasal lavages were centrifuged at 20 000 g at 4°C for 15 minutes. Aliquots of supernatant fluid (0·5 ml) were acidified at pH 3 and processed through C18 cartridge columns (Baker, Phillipsburg, NJ, USA). After washing with 10 ml acidified water and 20 ml petroleum ether, prostaglandins were eluted with 8 ml methyl formate, which was evaporated in a vacuum (Savant, H Hicksville, NY, USA). Dried residues were redissolved in Tris buffer and PGE₂ was determined by radioimmunoassay (RIA) as previously described with antiserum provided by the Institute Pasteur (Marnes la Coquette, France). Standard curves were generated from 1·9 to 500 pg/tube and samples were diluted 1:208. The recovery of radiolabelled ¹H-PGE₂ used as an internal standard of the assay was 86·4%.

The precision of the RIA method has been defined by calculating the intra-assay coefficient of variation (CV) for 10 repetitive assays of three nasal lavage samples. The table shows the results. The reliability of the procedure is supported by the 0·999 correlation coefficient calculated for nasal lavage samples supplemented with authentic PGE₂ (0, 5, 10, 20, 40, and 80 pg) and the corresponding values obtained by RIA (n = 5).

15-HETE

The extraction of 15-HETE from nasal lavages was performed according to a method previously described. Supernatant aliquots (2 ml) were processed without pH modification through C18 Baker cartridge columns. After a wash with 10 ml of water, 15-HETE was eluted with 5 ml methanol:water (9:1).

The eluent was then evaporated to dryness in a vacuum. Residues were redissolved in RIA buffer and 15-HETE was determined with RIA kits provided by Amersham. Antibodies were highly specific for 15-HETE. Standard curves were generated from 16 to 625 pg/tube and samples diluted 1:3·7. The recovery of radiolabelled ¹H-15-HETE used as an internal standard was 97·1%.

As shown by the parallelism of 15-HETE standards and nasal lavage samples assayed with serial dilutions (1:4, 1:16, 1:32, 1:64 and 1:128), these tests provide an indirect measure of the RIA specificity because sample immunoreactivity behaves in a similar manner to the standard.

Study design

A double blind crossover study design was used. Subjects were randomly divided into two study days one week apart. After a basal nasal lavage (time 0), three increasing doses of frusemide (5, 10, and 20 mg) were nebulised into the right nasal cavity by a hand driven nebuliser at 0·15, and 30 minutes. Nasal lavages were carried out 15 minutes after each dose of frusemide and 30 minutes after the last dose was administered (figs 1 and 2).

Equal volumes of placebo solution (0·5, 1, and 2 ml of 0·9% NaCl) were instilled into the right nasal cavity in the same manner as frusemide. As the frusemide solution used in our study had a pH of 9, the placebo solution (initial pH 7·3) was adjusted to pH 9 by the addition of 0·1 M NaOH.

Analysis

Results are presented as mean (SE) values in pg/ml. The statistical evaluation was performed on a microcomputer (Macintosh II, Apple, Cupertino, CA, USA) with a statistical software package (Statview 512+, Brainpower Inc, Calabasas, CA, USA). Student’s t test for paired sample analysis was used for statistical comparison between frusemide and placebo effects. Values <0·05 were considered statistically significant.

![Figure 1. Time course of mean PGE₂ release in nasal secretions. Concentrations of PGE₂ decreased after nasal administration of three increasing doses of frusemide (5, 10, and 20 mg; arrows) (solid line) or placebo (broken line). No significant differences were found between frusemide and placebo treated subjects (n=11).](http://thorax.bmj.com/)

Mean (SD) response of repetitive RIA determinations (n=10) of three different nasal lavage samples

<table>
<thead>
<tr>
<th>PGE₂</th>
<th>Response</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplemented sample*</td>
<td>42±5 (1·5)</td>
<td>3·5</td>
</tr>
<tr>
<td>Acetylsalicylic acid inhibited†</td>
<td>5·3 (0·5)</td>
<td>9·8</td>
</tr>
</tbody>
</table>

* Diluted 1:3 to fit the response to the most precise maximum slope part of the RIA standard curve.
† Sample from a subject who had ingested 500 mg of the prostaglandin synthesis inhibitor acetylsalicylic acid.

Figure 1. Time course of mean PGE₂ release in nasal secretions. Concentrations of PGE₂ decreased after nasal administration of three increasing doses of frusemide (5, 10, and 20 mg; arrows) (solid line) or placebo (broken line). No significant differences were found between frusemide and placebo treated subjects (n=11).
Frusemide may prevent asthmatic responses by interfering with one or more of the mechanisms involved in asthma. For instance, Anderson and coworkers have reported that frusemide may prevent the release of histamine and leukotrienes from human lung tissue passively sensitised to Dermatophagoides pteronyssinus. The relevance of these in vitro findings to in vivo allergen induced asthma has yet to be evaluated.

Frusemide is an inhibitor of sodium-potassium chloride cotransport located in the basolateral cell membrane. Mucosal application of frusemide, however, had no effect on cotonsecretion function. Another diuretic, amiloride, shows a greater effect than frusemide on epithelial ion flux but it does not prevent bronchoconstriction. Altogether, these findings suggest that inhibition of ion transport cannot account for the protective effect of frusemide. On the other hand, studies have shown that the antiasthmatic effect of frusemide is unlikely to be due to a direct effect on smooth muscle contraction. The protective effect of frusemide on cough induced by low chloride (Cl−) solution indicates that it might protect from bronchospasm by acting on airway sensory nerves but the mechanism of this hypothesis requires further studies.

Inhaled PGE₂, like inhaled frusemide, may inhibit bronchoconstrictor response to allergen, exercise, and metabisulphite. These findings, together with the reported stimulatory effect of frusemide on PGE₂ release, suggest that frusemide might prevent bronchospasm by enhancing PGE₂ production in the respiratory mucosa. The results of the present study, however, do not support this hypothesis.

15-HETE and other metabolites formed from arachidonic acid via 15-LOX and albumin have the capacity to promote inflammatory and hypersecretory responses in the airways. As 15-HETE can also modulate the generation of lipoxigenase products, it has been suggested that 15-HETE might also participate in the regulation of inflammatory responses in the upper airway. The recently described effect of disodium cromoglycate on 15-HETE production in the nose of subjects with rhinitis prompted us to investigate the effect of frusemide on the release of this arachidonic acid metabolite. Our study, however, could not find any effect of frusemide on 15-HETE production.

Different studies have shown that nasal lavages may be used to detect either an increase or decrease in the production of arachidonic acid metabolites. Because almost all studies with frusemide have been carried out in bronchial asthma, it might be argued that the results obtained with nasal lavages cannot rule out the possible implication of an increased production of PGE₂ at the bronchial level. Although the close similarities between nasal and bronchial mucosa, as far as arachidonic acid metabolite production is concerned, suggest that the results obtained in the nose might be extrapolated to
the bronchi, a comparison study is necessary to confirm this.

Dr Mullol was supported in part by a grant from Fundació Catalana de Pneumologia (FUCAP).

The work was supported by a grant from Dirección General de Investigación Ciencia y Tecnología (DGICYT) PM 90/0058 and Fondo de Investigación Sanitaria (FIS) 92/0281.

Failure of frusemide to increase production of prostaglandin E2 in human nasal mucosa in vivo.

J Mullol, I Ramis, J Prat, J Roselló-Catafa, A Xaubet, C Piera, E Gelpí and C Picado

Thorax 1993 48: 260-263
doi: 10.1136/thx.48.3.260

Updated information and services can be found at:
http://thorax.bmj.com/content/48/3/260

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/