nitrogen dioxide is defined as: "The 98th percentile of hourly means should not exceed 104.6 ppb." The underlying reason for specifying an upper percentile rather than an absolute limit is that extreme values are liable to be erratic, occurring in a highly local or transient manner or even as a result of instrument malfunction. In one year there are 8760 hours; the 98th percentile of hourly means is therefore the highest hourly mean measured. Only if this exceeds 104.6 ppb is the relevant ED directive contravened. The limit value, designed to safeguard health, was set with regard to exposure to nitrogen dioxide, was based on knowledge of the likely log-normal distribution of hourly mean concentrations. Though hourly means could exceed 104.6 ppb on 175 occasions per year, with occasional maxima up to three or four times that value, damage to health would not be expected.

In discussing WHO air quality guidelines for sulphur dioxide and smoke Dr Britton fails to point out that other factors of 2 for effects on morbidity and mortality and of 1.5 for decrements of lung function were included when the guidelines for combined exposure to sulphur dioxide and particulate matter were written.1 It should also be noted that the data on which the joint guideline was defined did not permit separation of sulphur dioxide and black smoke in terms of effects; it would thus be misleading to present the numbers of days when the joint guidelines were exceeded than each one separately. Furthermore, WHO guidelines for black smoke have not been defined on an hourly basis and the 24 hour guideline is currently defined as 125 µg/m³ rather than 100 µg/m³. The figure of 100 µg/m³ occurs in the World Health Organisation report of 1979.1 In that report a range of 100-150 µg/m³ was quoted.

R L MAYNARD
R W WALLER
Department of Health,
Hamblon House,
London SEI 6TE

The above are the opinions of the authors and should not be taken as representing those of the Department of Health.

AUTHOR’S REPLY I thank Drs Maynard and Waller for their comments on my article, and their clarification of the various guidelines and limits on atmospheric pollution levels. I suspect that I am not alone in finding them a little confusing. The point I wanted to make in the article is that by Sunyer et al (their ref 1) everyday variations in usual levels of atmospheric pollution had small but measurable respiratory morbidity. The vast majority of this variation was well within all of the guidelines and limits. We need guidelines for monitoring and enforcing pollution controls, but if there was any doubt about the health effects of pollution that does not contravene existing guidelines still causes respiratory morbidity. The question is whether this degree of morbidity is an acceptable or necessary price to pay for economic development and, if it is, how much society should be prepared to accept.

JOHN BRITTON
Respiratory Medicine Unit,
City Hospital, Nottingham NG5 1PB

Pulmonary function in chronic renal failure: effects of dialysis and transplantation

In their article (June 1991:4:424-8) Drs A Bush and R Gabriel referred to decreased carbon monoxide transfer (Dm) in four groups of patients with chronic renal failure. Apparently, their Dm values were corrected for haemoglobin, which was low in most of their patients. Thus the decreased Dm should be attributed to a factor other than a low haemoglobin pool. The authors speculated that it was due to interstitial lung fibrosis, caused by chronic subclinical oedema.

These authors' results differ from those of others. TCO is usually reduced in uraemic patients because of coexisting anaemia; adjusting to a normal haemoglobin concentration therefore produces normal TCO values.1 In the population they studied, however, the underlying cause could not be determined from their data. Interstitial fibrosis with resulting deterioration of the membrane TCO component (Dm) is the only possible factor. The authors did not perform chest radiography, which could have helped to resolve the issue. Moreover, there are even more sensitive tools for such evaluation—specificationally high-resolution computed tomography and a separate determination of Dm and the vascular component of the TCO: pulmonary capillary blood volume (Vc) and the reaction rate of carbon monoxide with haemoglobin (theta, θ). According to the theory of Roughton and Forster—expressed as 1/Dm = 1/Dm + 1/Vc-θ increases with increased haemoglobin. Without measuring the components of TCO therefore, even after adjustment for haemoglobin, one cannot determine whether DM or Vc predominantly affects the overall TCO. There are also reports that haemodialysis (their group 3) per se affects TCO, which was not considered by the authors. In the sample they studied, the effect of haemodialysis was a reduction in TCO of about 10%, due entirely to a decrease in Vc of about 20%, which was attributed to a decrease in blood volume with consequent reduction in Vc.

ZELJKO DUJIC
Department of Pulmonary Medicine,
Zagreb University School of Medicine in Split
5800 Split, Republic of Croatia

DAVAR ETEROVIC
Department of Nuclear Medicine,
JADRANKA TOCILJ
Department of Pulmonary Medicine,
Clinical Hospital Split
4500 Split, Republic of Croatia


AUTHOR’S REPLY We thank Professor Dujic and colleagues for their interest in our paper and for raising some interesting points. Our findings of a reduced TCO even after correction for anaemia is in accord with the findings of other workers1 not cited in their own paper. We agree that the pathological cause of the physiological abnormality was not determined; we did not think that additional radiography was justified when we designed the study, but agree that in the light of our findings quantitative computed tomography2 would be helpful to determine the issue of the meaning (if any) of attempting to measure Dm and Vc separately has been debated at length elsewhere.3 The theoretical problems include non-uniform Dm in the real lung, the dangers of extrapolating back to the intercept beyond the data points, and the profound effects that oxygen itself has on the pulmonary circulation, altering the variable one is trying to measure. There is also experimental evidence that Dm is insignificant.4 Thus we believe that TCO does indeed measure the amount of blood (or, strictly, haemoglobin) within the pulmonary capillary bed, and that it is reliable.

A BUSH

REFERENCES

Haematological effects of inhalation of N-formyl-methionyl-leucyl-phenylalanine in man

We read with interest the description by Dr M Peters and colleagues (April 1992;47:264-9) of the effects of temporary severe neutropenia in a patient undergoing the inhalation of the tripeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) in normal subjects, accompanied by activation of peripheral blood neutrophils as measured by chemiluminescence.

We agree that the likely mechanism is...
Pulmonary function in chronic renal failure: effects of dialysis and transplantation.

Z Dujic, D Eterovic and J Tocilj

Thorax 1992 47: 763
doi: 10.1136/thx.47.9.763-a

Updated information and services can be found at: http://thorax.bmj.com/content/47/9/763.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/