Comparison of polymerase chain reaction amplification of two mycobacterial DNA sequences, IS6110 and the 65kDa antigen gene, in the diagnosis of tuberculosis

D A Walker, I K Taylor, D M Mitchell, R J Shaw

Abstract

Background Knowledge of the sequences of mycobacterial genes and the availability of DNA amplification techniques have raised the possibility that identification of mycobacterial DNA may offer a rapid and specific diagnostic test for tuberculosis. The correlation between the presence of Mycobacterium tuberculosis DNA and clinical tuberculosis, however, is not known. This study compared the results of polymerase chain reaction amplification of two M tuberculosis DNA sequences, IS6110 and the gene encoding the 65kDa heat shock protein (65kDa Ag), from sputum, bronchoscopy washings, and bronchoalveolar lavage fluid and related these findings to the presence of active and past tuberculosis.

Methods Highly specific primers were used for amplification of IS6110 and 65kDa Ag DNA. Analysis was performed on one or more samples from 87 patients. IS6110 DNA was identified in samples from all six patients with active tuberculosis, from 15 to 18 patients with past tuberculosis, from five of nine contacts of patients with tuberculosis, and from nine of 54 patients with lung disease unrelated to tuberculosis. The 65kDa Ag DNA was identified in samples from all patients with active and past tuberculosis, from contacts of patients with tuberculosis, and from 14 of 42 patients with non-tuberculous lung diseases.

Conclusion These data suggest that the presence of IS6110 DNA correlates more closely with a tuberculosis related diagnosis than that of 65kDa Ag DNA and that both DNAs are found in most subjects with past tuberculosis or contacts of patients with tuberculosis. This may limit the clinical usefulness of these tests.

Tuberculosis continues to be a major cause of morbidity and mortality throughout the world, and its incidence is now increasing in developed countries. It is difficult to confirm the diagnosis of tuberculosis as the organism grows slowly. Culture for up to eight weeks may be required to isolate the organism and further time is needed to type the mycobacteria. Bactec provides sensitive detection of radioactive carbon (14C) released from the metabolised fatty acids in the medium and accelerates the time to diagnosis, but it may still take one to two weeks.

Amplification of specific mycobacterial DNA by polymerase chain reaction (PCR) offers the possibility of a rapid, sensitive, and specific test for tuberculosis. This technique raises interesting possibilities, including the ability to analyse a range of samples including cerebrospinal fluid and blood to diagnose tuberculosis, the study of subtle genomic differences in mycobacteria to explain the epidemiology of tuberculosis, and rapid identification of mycobacteria in immunocompromised patients.

Two of the many mycobacterial DNA sequences are candidates for a diagnostic test. These are the gene encoding the 65kDa heat shock protein (65kDa Ag) and the sequence of IS6110, a mycobacterium specific DNA sequence present as repeats in the genome. Studies using probes for the 65kDa Ag gene and probes combined with DNA amplification have succeeded in identifying mycobacteria obtained after routine culture, and from Bactec culture. Combined amplification and probing has also been used successfully in preliminary studies on clinical samples from patients with tuberculosis.

The relation between the bacteriological identification of Mycobacterium tuberculosis and clinical disease is well recognised. Detection of specific DNA takes no account of organisms’ viability or pathogenicity. There is no information on the relation between the identification of mycobacterial DNA in clinical samples by the new sensitive techniques of PCR and of probing and the presence of clinical disease. In this study, the results of DNA amplification by PCR of the two mycobacterial DNA sequences IS6110 and the 65kDa Ag gene in sputum and airway secretions are compared in relation to the clinical status of the patient.

Methods

PATIENTS AND CLINICAL SAMPLES

Sputum samples and samples from the bronchoscopy trap and bronchoalveolar lavage were obtained from 87 patients attending the chest clinic. The diagnosis of tuberculosis was made on the basis of clinical, radiological, and mycobacterial culture results. Six patients with bacteriologically confirmed active tuberculosis,
Polymerase chain reaction amplification of two mycobacterial DNA sequences in the diagnosis of tuberculosis

18 with past tuberculosis, 9 contacts of patients with tuberculosis, and 54 patients with other respiratory diseases were recruited. Pure laboratory strains of M tuberculosis were obtained as positive controls (gift of Dr I Brown, Bacteriology Department, St Mary’s Hospital Medical School).

DNA PREPARATION
Sodium hydroxide was added to each sample to a final concentration of 0.05M NaOH. The sample was boiled for 10 minutes and the DNA was extracted twice in phenol/chloroform/isoamyl alcohol (25:24:1) and once in chloroform/isoamyl alcohol, followed by precipitation in 70% ethanol and resuspension in water.

DNA AMPLIFICATION
DNA amplification17 used primers IS1 and IS2 to recognised sequences in the IS6110 gene,4 and primers TB1 and TB2 to the 65kDa Ag gene48 (table 1). In brief, the 50 µl reaction mixture contained 10 mmol/l tris-hydrochloric acid (pH 8.3) (Sigma, Poole, UK), 50 mmol/l potassium chloride (BDH, Poole, UK), 1.5 mmol/l magnesium chloride (Sigma), 10 mg/l gelatin (BDH), 200 µmol/l of each deoxyribonucleotide (Pharmacia, Uppsala, Sweden), 1 unit TQ polymerase (Perkin Elmer Cetus, Emeryville, Ca, USA), 50 pmol of oligonucleotides TB1 and TB2 or IS1 and IS2 (synthesised on a Cyclone (Milligen, Watford, UK)), and 5 µl of clinical sample DNA containing 0.2–1.0 µg total DNA. Light mineral oil (25 µl) (Perkin Elmer Cetus) was layered over each mixture. The PCR conditions for IS6110 DNA amplification were an initial denaturation step of 94°C for five minutes, after which TQ polymerase was added and 35 cycles of 94°C for two minutes, 68°C for two minutes and 72°C for two minutes were utilised, with an extension of five seconds added per cycle to the 72°C phase. For 65kDa Ag DNA identification, an initial denaturation step of 96°C for seven minutes was followed by 35 cycles of amplification under conditions of 94°C for one minute, 60°C for two minutes, 72°C for two minutes, with a final extension step at 72°C for 10 minutes.

DNA IDENTIFICATION
Amplification products were electrophoresed in a 2% agarose gel containing ethidium bromide. The specific fragments (123 base pairs for IS6110, 383 for 65kDa Ag) were initially identified by visualisation under ultraviolet light. DNA was transferred to Hybond N membrane (Amersham Pharmaceuticals, Amersham, Bucks, UK) and hybridised overnight at 55°C with the 32P labelled oligonucleotide IS3 or TB4 (table 1).35,48 The oligonucleotide had been previously end labelled by kinase (BRL, Gaithersburg, MD, USA) with 32P labelled dATP (ICN, High Wycombe, UK). After hybridisation, the membrane was washed under increasingly stringent conditions with a final wash in 0.03 M NaCl, 6mM Na citrate and 0.1% sodium dodecyl sulphate (Sigma) at 55°C. The presence of mycobacterial DNA was confirmed by autoradiography with exposures of 2–24 hours.

All experiments included positive control samples where mycobacterial DNA was included and negative control samples where sample DNA was omitted.

Results
IDENTIFICATION OF IS6110 AND 65KDA AG DNA IN SPUTUM FROM PATIENTS WITH TUBERCULOSIS
In initial studies, IS6110 DNA was detected in sputum from patients with tuberculosis but not from patients with other lung diseases by both ethidium bromide staining and subsequent probing with 32P labelled IS3. Similarly, amplification of 65kDa Ag DNA and subsequent probing with 32P labelled TB4 oligonucleotide identified the 65kDa Ag DNA in sputum from a patient with tuberculosis, while sputum from a patient with small cell lung cancer contained no 65kDa Ag DNA.

REQUIREMENT FOR 32P PROBING
To determine whether ethidium bromide staining and 32P probing were required to identify IS6110, the results in 55 patients were compared. Fourteen cases were positive by both indicators and 41 negative by both systems. No cases were positive on one detection system only. Eight cases with a positive ethidium bromide staining result were used alone to identify IS6110 DNA in subsequent clinical samples. When ethidium bromide staining and 32P probing were compared for the 65kDa Ag DNA, 11 cases were identified by both ethidium bromide and 32P TB4 and eight by 32P TB4 alone. 32P probing was used to confirm the presence of 65kDa Ag DNA in subsequent clinical samples.

REPRODUCIBILITY
Reproducibility of IS6110 and 65kDa Ag gene detection was assessed when DNA from 46 samples (26 containing IS6110 DNA and 34 containing 65kDa Ag DNA) was subjected to amplification for IS6110 and 65kDa Ag DNA on a second occasion. IS6110 DNA was identified by ethidium bromide staining in 25 of 26 repeat assays (96%). 65kDa Ag DNA was identified by ethidium bromide staining in 28 of 34 repeat assays (82%), and after 32P probing in 39 of 46 (85%) of assays.

COMPARISON OF IS6110 AND 65KDA AG DNA IDENTIFICATION IN RESPIRATORY SAMPLES FROM PATIENTS WITH LUNG DISEASE
Ninety respiratory samples—from sputum, bronchoscopy trap, and bronchoalveolar lavage—were collected from 87 patients. Several samples were obtained from seven

<table>
<thead>
<tr>
<th>Table 1</th>
<th>5'-3' Sequence of oligodeoxynucleotides used as primers and probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB1—5'GAGATCGGAGCTGGAAGATCC-3'</td>
<td></td>
</tr>
<tr>
<td>TB2—5'AGCTGACCAAGGTTCTGTT-3'</td>
<td></td>
</tr>
<tr>
<td>TB4—5'CGAATGCTGGCGTGGCG-3'</td>
<td></td>
</tr>
<tr>
<td>IS1—5'CCTCGGAGCGTACGCGGCG-3'</td>
<td></td>
</tr>
<tr>
<td>IS2—5'CTCGTCAGCGCCTGTCG-3'</td>
<td></td>
</tr>
<tr>
<td>IS3—5'CATAAGTTGCGTTCGAC-3'</td>
<td></td>
</tr>
</tbody>
</table>
patients, and three patients gave more than one type of sample. IS6110 DNA was found in samples from all six patients with active pulmonary tuberculosis (seven of eight samples). It was also found in 15 of 18 patients with past tuberculosis (16 of 20 samples), five of nine tuberculosis contacts (five of nine samples), and five of 54 patients with non-tuberculous lung disease (six of 56 samples) (figure, table 2).

Thus IS6110 DNA detection was a sensitive test for tuberculosis, but was not specific for active disease.

Detection of the 65kDa Ag DNA was also very sensitive, in that it was found in samples from four of four patients with active tuberculosis (four of five samples), four of four patients with past tuberculosis (five of eight samples) and four of four contacts (four of six samples). It was also present in samples from 14 of 42 patients with non-tuberculous lung disease (15 of 43 samples), suggesting lack of specificity.

The findings were similar when the results from each sample were compared (table 2). Both IS6110 and 65kDa Ag DNA were found in over three quarters of the samples from patients with active tuberculosis, and in over half the samples from patients with past tuberculosis or from contacts of cases of tuberculosis. IS6110 DNA was identified in six of 56 samples from patients with a lung disease other than tuberculosis, and 65kDa Ag DNA was identified in 15 of 43 samples from these patients. There was no difference in the yield of positive results when sputum, bronchoscopy trap, and bronchoalveolar lavage samples were compared.

Discussion

Many different mycobacterial genes have been proposed as targets for the detection of M tuberculosis in clinical samples. The optimal target DNA has yet to be defined and the relation between positive identification of M tuberculosis DNA and clinical disease is unknown. We have compared the detection of two mycobacterial DNA sequences as a diagnostic test for tuberculosis and correlated the presence of these DNAs with clinically active or past exposure to tuberculosis.

The study makes two observations. Firstly, IS6110 DNA detection had some advantages over 65kDa Ag detection in the diagnosis of tuberculosis. IS6110 DNA was detected in a smaller proportion of patients with diseases unrelated to tuberculosis than 65kDa Ag DNA. IS6110 was also technically easier to detect than 65kDa Ag. The second observation was the high detection rate of both IS6110 and 65kDa Ag DNA in samples from patients with past tuberculosis and contacts of cases of tuberculosis.

In this study, both IS6110 DNA and 65kDa Ag DNA were identified in most samples from patients with tuberculosis, past tuberculosis and contacts. We had anticipated that IS6110 DNA detection would have been greater because unlike the 65kDa Ag DNA it is present as multiple repeats in the M tuberculosis genome. For any mycobacterium there are thus several IS6110 sequences but only one 65kDa Ag DNA sequence available for amplification.

The ability to identify an organism through its DNA depends on the specificity of a particular sequence of DNA for a given organism and the specificity of the selected primers for a given DNA sequence. The primers we used were highly specific for each DNA sequence and were selected because they had been used by others. Their specificity was confirmed by a search in Genbank (Clinical Research Centre, Harrow, UK, 1991). Both pairs of primers (IS1/IS2 and TB1/TB2) had 100% homology with IS6110 and 65kDa Ag DNA. Individual members of each pair of primers have 70-90% homology with a few DNA sequences from genes of organisms other than M tuberculosis. None of the genes from these organisms, however, had sequences with homology to the second member of the pair of primers. Thus, even if these other organisms had been present in the sample, their DNA sequence would not have been amplified as this amplification occurs only when both primers bind to the target sequence. Finally, the specificity was confirmed when the amplified products had the predicted size, indicating that these products contained the anticipated number of nucleic acid bases.

The presence of 65kDa Ag DNA in samples from up to a third of patients with a diagnosis unrelated to tuberculosis suggests that PCR amplification of 65kDa Ag DNA may have limited clinical use. Because the less sensitive detection system for 65kDa Ag yielded positive

| Table 2 Number of samples containing IS6110 or 65kDa Ag DNA divided by the total number of samples from sputum, bronchoscopy trap (Trap), and bronchoalveolar lavage fluid (BAL) and listed according to the clinical classification (in nearly all cases, each sample corresponds to a different patient, as only seven patients gave more than one sample, and only three gave samples in more than one category). |
|---|---|---|---|---|
| | Active tuberculosis | Past tuberculosis | Contact | Other diagnosis |
| IS6110: | | | | |
| Sputum | 2/2 | 9/13 | 4/5 | 2/15 |
| Trap | 4/5 | 6/6 | 1/2 | 3/24 |
| BAL | 1/1 | 1/1 | 0/2 | 1/17 |
| Total | 7/8 | 16/20 | 5/9 | 6/56 |
| 65kDa Ag: | | | | |
| Sputum | 2/3 | 3/5 | 4/5 | 5/11 |
| Trap | 2/2 | 1/2 | 0/2 | 6/17 |
| BAL | 0/0 | 1/1 | 0/0 | 4/15 |
| Total | 4/5 | 5/8 | 4/6 | 15/43 |
Polymerase chain reaction amplification of two mycobacterial DNA sequences in the diagnosis of tuberculosis

results and the more sensitive detection system for IS6110 DNA negative results in samples from most of these patients the DNA containing 65kDa Ag probably did not originate from M tuberculosis. The DNA sequence of the 65kDa Ag shares homology with the DNA sequence of M leprae, the common antigen of pseudomonas, and the groEL protein of *Escherichia coli*.

The possibility that the PCR used in this study was amplifying DNA from other non-tuberculous mycobacteria in the lungs was reduced by probing with TB4, which bound with high affinity to *M tuberculosis* DNA only. The 65kDa Ag gene in *M tuberculosis* is thought to be identical in terms of amino acid sequence with the same gene in *M africanum* and *M bovis* BCG. Similarly, IS6110 DNA is also found in *M bovis* and *M simiae* but not in other mycobacterial species.

We cannot exclude the possibility that the positive findings with IS6110 or 65kDa Ag DNA were the result of infection by other members of this small family of *M tuberculosis* like mycobacteria.

The other technical advantage of using IS6110 detection to diagnose tuberculosis was that it was more rapid. Results were documented by ethidium bromide staining of amplified products on a gel without the need to confirm the nature of the band by Southern blotting and hybridisation with the 32P labelled IS3 oligodeoxynucleotide probe. As sequences similar to 65kDa Ag DNA are present in other mycobacteria, probing with 32P labelled TB4 was required to confirm that the amplified product of the 65kDa Ag was derived from *M tuberculosis*.

This additional step also increased the sensitivity of the test. Amplified 65kDa Ag DNA from eight patients was not clearly visualised by ethidium bromide staining but was identified following 32P probing with the TB4 oligonucleotide.

The detection of both IS6110 and 65kDa Ag DNA in samples from patients with past tuberculosis and contacts of patients with tuberculosis was unexpected and poses a difficulty if these tests are to be clinically useful. Technical factors are unlikely to account for this observation. Although contamination of reagents by target DNA is a common problem with PCR, this was excluded in our experiments as the negative controls were consistently negative. The laboratory equipment was cleaned regularly and checked by the "wipe test." Initial concern that contamination of the bronchoscope might result in false positive results was unfounded as the incidence of false positive results in samples obtained at bronchoscopy was similar to that in sputum (table 2). We did not perform all the analyses in duplicate or triplicate, and this would be prohibitively expensive for a test aimed at routine clinical practice. The reproducibility was better for detection of IS6110 DNA than for 65kDa Ag DNA in that identical results were obtained in 96% of duplicate assays for IS6110 DNA compared with 85% for 65kDa Ag DNA.

An alternative explanation for the positive results in samples from patients with past tuberculosis and from contacts might have been that, unlike bacteriological culture, PCR, with or without probing, can detect non-viable organisms. It would be expected to detect mycobacteria in samples from patients being treated for tuberculosis some months after culture had become negative, as suggested by Brisson-Noel et al.

Our data suggest that *M tuberculosis* DNA from organisms that are not viable or rendered non-pathogenic was present in respiratory samples from many patients for long periods after completion of tuberculosis treatment, and in samples from contacts of patients with tuberculosis.

It is questionable whether PCR amplification in its present form is suitable as a routine clinical test. The technique involves three basic steps, DNA extraction, PCR amplification, and visualisation of the amplified product. DNA extraction uses toxic organic chemicals and there is a risk of contamination of the sample with DNA from other samples or amplified product from a previous reaction. PCR requires expensive reagents and manual dexterity in handling very small volumes without causing contamination. Visualisation of the product involves running a gel and either staining the gel with ethidium bromide or transferring the DNA to a membrane and probing this with a radiolabelled probe.

Comparison of IS6110 and 65kDa Ag DNA detection on technical grounds and in terms of their correlation with clinical disease suggests that detection of IS6110 DNA in respiratory samples may prove more useful in the clinical setting. A negative result with this technique seemed to identify those patients in whom mycobacteria would not subsequently be detected. Further refinements are required to discriminate patients with tuberculosis from those with previously treated tuberculosis or contacts of patients with tuberculosis. The technique provided only qualitative data on the presence or absence of specific DNA. With the development of PCR methods to quantify the number of molecules of a particular DNA in a sample, it may be possible to discriminate further between different patient groups.

This sensitive technique may also be used to investigate the relation between infection of the host by *M tuberculosis* and the development of clinical disease. The identification of *M tuberculosis* DNA in samples from patients with treated tuberculosis and from contacts suggests that host immune responses may contain the organisms in a non-viable or non-pathogenic dormant state for long periods. This is in keeping with clinical experience, in that reactivation of past tuberculosis is a well recognised consequence of iatrogenic or acquired immunodeficiency.

The authors would like to thank Dr Howard Beswick for his assistance in the synthesis of the oligonucleotides and the use of Genbank. This work was supported by grants from the Chest, Heart and Stroke Association and the Locally Organised Research Committee. It was presented in part at the American Thoracic Society meeting, Anaheim, May 1991.

Comparison of polymerase chain reaction amplification of two mycobacterial DNA sequences, IS6110 and the 65kDa antigen gene, in the diagnosis of tuberculosis.

D A Walker, I K Taylor, D M Mitchell and R J Shaw

Thorax 1992 47: 690-694
doi: 10.1136/thx.47.9.690

Updated information and services can be found at:
http://thorax.bmj.com/content/47/9/690

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/