Surgical closed pulmonary valvotomy for critical pulmonary stenosis: implications for the balloon valvuloplasty era

Aram Smolinsky, Ravit Arav, Julius Hegesh, Ayala Lusky, Daniel A Goor

Abstract

Background Closed pulmonary valvotomy for critical pulmonary stenosis has no apparent advantage over the percutaneous balloon technique, though it is used when balloon valvuloplasty fails. Experience of this technique at the Heart Institute, Tel Hashomer, since it was first used in 1973 has been reviewed.

Methods Thirty-eight infants up to 1 year old (25 of them neonates—that is, nil to 1 month old) with critical pulmonary stenosis were operated on from 1973 to 1989. All had a transventricular valvotomy, by a modification of the Brock method, and all underwent cardiac catheterisation before surgery.

Results Five of the 25 neonates (20%) died, but none of the other infants, so that the total mortality (five out of 38) was 13%. Three of the 38 required an aortopulmonary shunt. All 38 survivors were followed up—from one month to 14 years (mean 7.5 years). All were symptom free at the last checkup. Fifteen of the survivors had required further surgery; this was successful in all cases.

Conclusions For the balloon valvuloplasty era surgical pulmonary valvotomy provides a good back up for failed attempts at percutaneous valvuloplasty. Review of outcome provides data for comparison with balloon valvuloplasty in the future.

Patients and methods

From July 1973 to September 1989 38 infants were operated on at the Sheba Medical Center for critical pulmonary stenosis. Their ages ranged from 1 day to 1 year (mean age 1.9 months). Twenty-six were male and 12 female. The patients' clinical condition, electrocardiograms, and angiographic, echo Doppler (when available), and catheterisation results are presented in Table 1.

All the infants were operated on by a modification of the Brock technique that is based on an initial enlargement of the tight passage through the valve with a small mosquito clamp and further dilatation with biliary dilators. The patient is placed supine and a mid sternotomy performed. A pursestring suture is put immediately below the pulmonary valve on the right ventricular wall of the heart. A small incision is made within this suture, and a mosquito clamp is introduced into the heart and through the narrow opening in the valve. Once the valve is opened a distinct tearing is felt. Further dilatation is achieved by passing increasing sizes (5–10 mm) of biliary dilators through the pursestring into the main pulmonary artery.

Since 1980 all neonates have had a prosta-glandin E, infusion before surgery; this is discontinued gradually a few days after surgery. Systemic artery blood gas tensions are checked, an oxygen tension above 4 kPa being considered adequate. If the value drops below this level an aortopulmonary shunt is added.

Follow up was from 3 months to 14 years (mean 7.5 years). Twenty patients have been observed for more than five years. Surviving patients were divided retrospectively into those who did not require further surgery (group A, n = 19), and those who did (group B, n = 14).

Some patients with a good clinical result were followed up by correspondence with their cardiologist; not all patients had a late echo Doppler examination.

Further surgery consisted of a standard open heart procedure in 12 patients and inflow occlusion in two.

STATISTICAL ANALYSIS

Mortality rates and 95% confidence limits were calculated on the assumption that the number of deaths followed a binomial distribution.

Fischer's exact probability test was used to test for differences in the percentage of normal
electrocardiograms between group A and group B. A life table technique was applied to the data according to the product limit method (Kaplan-Meier)\(^3\)\(^4\) to estimate the distribution of time to reoperation for patients observed over varying periods. Univariate comparisons of time to reoperation according to age at operation, size of dilator, and presence or absence of diastolic murmur were made by using the Mantel-Cox or Tarone-Ware statistics\(^5\)\(^6\) to test the equality of the curves. The relation between all the explanatory variables and the time to reoperation was quantified by using Cox's proportional hazards model.\(^5\)\(^6\)

Results

EARLY RESULTS

Five operative deaths occurred (13%); details are given in table 2. All were neonates under 1 week of age. The operative mortality and 95% confidence limits by age group were: total group 13% (5/38 patients), CL 4-2, 27%; neonates (up to 1 month) 20% (5/25), CL 6-8, 41%; infants (1 month to 1 year) 0% (0/13), CL 0, 22%.

Three of the 38 patients required an aorto-pulmonary shunt (table 1: patients 9, 11, 37). This was for persistent hypoxaemia in two neonates, one of whom died from septicaemia. The third was admitted with a barely functioning Blalock-Taussig shunt.

LATE RESULTS

The remaining 33 patients were available for follow up, of whom 19 had not required further surgery (group A) and 14 had (group B). All patients in group B underwent cardiact catheterisation, and right ventricular systolic pressure ranged from 73 to 200 (mean 130) mm Hg. By five years after the initial operation 22 (67%) had not required further surgery compared with 19 (58%) at eight years. No patient

Table 1: Details of patients having the Brocken procedure

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Sex</th>
<th>Age (days)</th>
<th>Preoperative RVP (mm Hg)</th>
<th>Dilator size (mm)</th>
<th>Death</th>
<th>Reoperation</th>
<th>Follow up (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>1</td>
<td>140</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>0-25</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>1</td>
<td>100</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>1</td>
<td>110</td>
<td>5</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>1</td>
<td>110</td>
<td>7</td>
<td>–</td>
<td>+</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>1</td>
<td>150</td>
<td>5</td>
<td>–</td>
<td>+</td>
<td>3-5</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>1</td>
<td>115</td>
<td>5</td>
<td>–</td>
<td>+</td>
<td>3-5</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>2</td>
<td>160</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>2</td>
<td>Unregistered</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>2</td>
<td>Not taken</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>1-5</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>2</td>
<td>140</td>
<td>5</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>3</td>
<td>140</td>
<td>2</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>3</td>
<td>160</td>
<td>6</td>
<td>–</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>5</td>
<td>120</td>
<td>TD</td>
<td>–</td>
<td>+</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>6</td>
<td>150</td>
<td>8</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>10</td>
<td>160</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>10</td>
<td>200</td>
<td>6</td>
<td>–</td>
<td>+</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>13</td>
<td>100</td>
<td>7</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>20</td>
<td>M</td>
<td>14</td>
<td>125</td>
<td>5</td>
<td>+</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>M</td>
<td>21</td>
<td>180</td>
<td>5</td>
<td>–</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>F</td>
<td>30</td>
<td>110</td>
<td>7</td>
<td>–</td>
<td>+</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>M</td>
<td>30</td>
<td>100</td>
<td>9</td>
<td>–</td>
<td>+</td>
<td>11</td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>30</td>
<td>160</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>10-67</td>
</tr>
<tr>
<td>25</td>
<td>F</td>
<td>30</td>
<td>160</td>
<td>5</td>
<td>–</td>
<td>+</td>
<td>3-67</td>
</tr>
<tr>
<td>26</td>
<td>M</td>
<td>2</td>
<td>120</td>
<td>9</td>
<td>–</td>
<td>–</td>
<td>7-5</td>
</tr>
<tr>
<td>27</td>
<td>F</td>
<td>2</td>
<td>150</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>F</td>
<td>2-5</td>
<td>190</td>
<td>8</td>
<td>–</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>F</td>
<td>3-5</td>
<td>140</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>4</td>
<td>140</td>
<td>MC</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>31</td>
<td>F</td>
<td>4</td>
<td>150</td>
<td>9</td>
<td>–</td>
<td>–</td>
<td>10-67</td>
</tr>
<tr>
<td>32</td>
<td>F</td>
<td>5</td>
<td>140</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>2-5</td>
</tr>
<tr>
<td>33</td>
<td>M</td>
<td>5-5</td>
<td>120</td>
<td>5</td>
<td>–</td>
<td>+</td>
<td>12</td>
</tr>
<tr>
<td>34</td>
<td>F</td>
<td>6</td>
<td>120</td>
<td>18 MD</td>
<td>–</td>
<td>–</td>
<td>13-67</td>
</tr>
<tr>
<td>35</td>
<td>M</td>
<td>6</td>
<td>140</td>
<td>9</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>36</td>
<td>M</td>
<td>6</td>
<td>120</td>
<td>9</td>
<td>–</td>
<td>+</td>
<td>10</td>
</tr>
<tr>
<td>37</td>
<td>M</td>
<td>8</td>
<td>120</td>
<td>8</td>
<td>–</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>M</td>
<td>11</td>
<td>–</td>
<td>8</td>
<td>–</td>
<td>+</td>
<td>11</td>
</tr>
</tbody>
</table>

RVP—systolic right ventricular pressure; TD—Tubbs dilator; MC—mosquito clamp only.

Table 2: Causes of death

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Age at surgery (days)</th>
<th>Cause of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
<td>Technical mistake; intraoperative death</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>Technically inadequate valvotomy apparent at necropsy, the perforation being on the floor of one sinus, and a shunt done later thrombosed; death two weeks later from general sepsis</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>Emergency operation performed directly from the catheterisation table; unnoticed residual hepatic activity led to bleeding and tamponade several hours after seemingly good valvotomy</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>Dysplastic pulmonary valve found at necropsy; death from low cardiac output within 24 hours</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>Traumatic operation (8 mm dilatation); death within several hours</td>
</tr>
</tbody>
</table>
required further surgery after that time. Univariate analysis of the time interval before the initial operation and further surgery showed that the interval was shorter in younger patients (p = 0.07, fig 1), with the smaller dilators (p = 0.06, fig 2), and in those without a diastolic murmur (p = 0.02, fig 3). Multivariate analysis using these three variables showed a borderline effect for diastolic murmur and dilator size on the risk of requiring a further operation.

When this analysis was applied to the neonates only the effect of dilator size showed a stronger relation to need for further surgery. Neonates had a 3-5 fold higher risk of reoperation if the dilator size was 5 mm or less compared with neonates with a dilator size of 6 mm or more, after the presence or absence of a diastolic murmur had been controlled for. No such analysis could be used for infants (age 30 days and over) because the group was too small (n = 13).

The morphology of the pulmonary valve in the patients who underwent open pulmonary surgery was analysed for angiographic-pathological correlation. Angiography had been performed for all 14 patients requiring a second operation. The pulmonary valves in eight were judged to be dome shaped, of which six proved to be classically dome shaped at surgery; two had some dysplastic features. Four valves were judged to be dysplastic from angiography; three proved classically dysplastic and one was only partially so (defined as thickened leaflets and enlarged sinuses with no commissural fusion). Two patients had distorted valves that appeared thick on the angiograms, but were not described as dysplastic. At surgery one appeared to be dysplastic; the other was a distorted dome shaped valve.

The pulmonary valve showed widely varying morphological abnormalities. There was a correlation between angiographic diagnosis of dysplastic valve and the findings at surgery (kappa 0.62, p < 0.05).

The 19 patients who did not require further surgery (group A, table 3) were all symptom free when last seen, though 12 had a pulmonary diastolic murmur. Most had a normal electrocardiogram, in contrast to patients in group B, who had signs of right ventricular hypertrophy (p < 0.01).

![Figure 1](http://example.com) Cumulative proportion of patients surviving without reoperation according to whether at first operation they were neonates (younger than 30 days) or infants (30 days to one year), showing a borderline advantage to surgery in infants (p < 0.07).

![Figure 2](http://example.com) Cumulative proportion of patients surviving without reoperation according to whether the dilator size was 5 mm or less (mosquito clamp only) or 6 mm or more, showing better results with the larger dilators (p < 0.06).

Table 3 Results for the 19 patients in group A (no reoperation)*

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Age at surgery</th>
<th>Dilator size (mm)</th>
<th>Follow up (y)</th>
<th>DM</th>
<th>ECG</th>
<th>Pressure gradient (Doppler† (mm Hg))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 d</td>
<td>6</td>
<td>0-25</td>
<td>1/6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>1 d</td>
<td>10</td>
<td>11</td>
<td>2/6</td>
<td>IRBBB</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>2 d</td>
<td>5</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>2 d</td>
<td>6</td>
<td>1-5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>3 d</td>
<td>6</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>Normal</td>
</tr>
<tr>
<td>6</td>
<td>10 d</td>
<td>8</td>
<td>12</td>
<td>1/6</td>
<td>RVH</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>30 d</td>
<td>9</td>
<td>11</td>
<td>1/6</td>
<td>IRBBB</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>30 d</td>
<td>10</td>
<td>10-67</td>
<td>2/6</td>
<td>IRBBB</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>1 m</td>
<td>5</td>
<td>3-67</td>
<td>—</td>
<td>—</td>
<td>Normal</td>
</tr>
<tr>
<td>10</td>
<td>2 m</td>
<td>9</td>
<td>7-5</td>
<td>2/6</td>
<td>Mild RVH</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>2 m</td>
<td>8</td>
<td>3-5 m</td>
<td>2/6</td>
<td>IRBBB</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>3-5 m</td>
<td>6</td>
<td>2</td>
<td>1/6</td>
<td>RVH</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>4 m</td>
<td>MC</td>
<td>12-5</td>
<td>1/6</td>
<td>IRBBB</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>4 m</td>
<td>9</td>
<td>10-67</td>
<td>1/6</td>
<td>IRBBB</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>5 m</td>
<td>8</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>5-5 m</td>
<td>8</td>
<td>12</td>
<td>1/6</td>
<td>Normal</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td>6 m</td>
<td>9 TD</td>
<td>13-67</td>
<td>2/6</td>
<td>IRBBB</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>6 m</td>
<td>9</td>
<td>11</td>
<td>—</td>
<td>IRBBB, RVH</td>
<td>—</td>
</tr>
<tr>
<td>19</td>
<td>8 m</td>
<td>8</td>
<td>2</td>
<td>2/6</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*pAll symptom free at follow up.

†The Doppler method was introduced later in the series and some patients therefore did not have it.

MC—mosquito clamp only; TD—Tubbs dilator; DM—diastolic murmur; ECG—electrocardiogram; RVH—right ventricular hypertrophy; IRBBB—incomplete right bundle branch block.

Surgical closed pulmonary valvotomy for critical pulmonary stenosis

181

Figure 1 Cumulative proportion of patients surviving without reoperation according to whether at first operation they were neonates (younger than 30 days) or infants (30 days to one year), showing a borderline advantage to surgery in infants (p < 0.07).

Figure 2 Cumulative proportion of patients surviving without reoperation according to whether the dilator size was 5 mm or less (mosquito clamp only) or 6 mm or more, showing better results with the larger dilators (p < 0.06).
Discussion

This study of 38 patients is one of the larger series of neonates and infants undergoing closed pulmonary valvotomy by a modification of the Brock procedure. There were no operative deaths in patients over 1 week of age. As we are now in the balloon dilatation era the old debate on which surgical procedure should be used (closed valvotomy, infow occlusion,4–6 or open heart technique47–49) seems outdated, and the discussion is limited to the results of closed valvotomy.

Closed transventricular valvotomy, as proposed by Brock in 1948,5 is regarded as a simple andatraumatic method of treating critical pulmonary stenosis, especially in neonates and infants.1–4,13–17 It relieves the pulmonary valve stenosis without allowing direct inspection of the valve. Many authors discarded this technique because of the high proportion of patients requiring reoperation.15,16 The average mortality is reported to be about 28% in neonates and 14% in infants.4

Although we had no deaths,3 haemorrhage and cardiac arrest sometimes occurred during the valvotomies until 1980, often when larger sized dilators were used. In our technique the full diameter of the dilator passes through the right ventricular wall, which may then be more difficult to close. Since 1980 we have not insisted on large dilators—5–7 mm are considered sufficient. We have assumed that the primary tear by the mosquito clamp causes most of the dilatation. Smaller dilators were significantly related to a shorter interval before reoperation, however, in keeping with the commonsense expectation that the larger the dilator the better. Our main object was the safety of the operation; surgical or balloon valvuloplasty may be used safely at a later stage. As the size of dilator, however, was the most important factor predicting freedom from reoperation in neonates, we would now recommend a larger dilator when possible. Thus when we are confronted nowadays with a patient (usually after failure of attempts at balloon dilatation) we may use an 8 mm balloon introversively instead of a metal dilator. When it is deflated the catheter will enter the right ventricle through a 2–3 cm hole, and only when the catheter is in position in the orifice of the pulmonary valve, its tip palpable in the main pulmonary artery, will the balloon be inflated to a diameter of 8 mm. This maintains the small diameter of the entry hole in the wall of the right ventricle while still providing a large dilatation. Some authors17–20 claim that a small right ventricle poses an additional risk in critical pulmonary stenosis, whereas others4 do not. In our series most patients had a normal sized right ventricle, as in Weldon's series.21 In only one angiogram from the 14 patients who returned for a repeat assessment before further surgery could the right ventricle be defined as hypoplastic, and this patient had a favourable outcome in the long term.

During the time that most of our patients had their initial surgery balloon dilatation was not available, so they were referred for closed transventricular valvotomy, regardless of right ventricular size or presence of tricuspid insufficiency. Some recent reports on the success of balloon dilatation seem to show a correlation between unfavourable outcome and small size of right ventricle, whereas others dispute the correlation.22–24 A small right ventricle was not a major risk factor in our patients who died.

The need for an elective shunt in neonates under 1 week of age is still debated. Of the neonates less than 1 week old in our series, two received a shunt (one survived, one died). Coles et al18 claim that adding a shunt should improve survival in neonates, as their mortality for patients with pulmonary atresia (shunt in all cases) is lower than in patients with pulmonary stenosis (who do not usually receive a shunt electively), though the latter is considered a lesser lesion than atresia. Our policy is not to add an aortopulmonary shunt electively in every neonate, as this is an additional surgical procedure with added risk, and the condition can usually be managed with a prostaglandin drip for a few days. Only rarely, when oxygen tension falls below 4 kPa, will a patient undergo further surgery and an aortopulmonary shunt be added (two patients out of 38 in our series).

A favourable five year follow up does not exclude the possibility that some of these children will require further surgery later.18 Two of our patients developed signs of right ventricular hypertrophy after the initial improvement on the electrocardiogram. Long term follow up after puberty is important for determining whether a late pressure gradient develops.

When the different surgical approaches, with their surgical mortality, are being evaluated the need for further surgery must be considered. The necessity of reoperation is reported in conjunction with all the methods.16,18,25–27 Coles et al18 reported a 28% five year and a 58% 10 year reoperation rate, irrespective of operative technique. Restenosis will usually be treated nowadays by repeated balloon dilatation.

The optimal approach for patients with a dysplastic pulmonary valve and its precise recognition28 are debated. Several authors object to the use of the Brock procedure in patients with dysplastic valves9–11,12,25,29–32 as mortality has been 38–66%.1,33–39 Valvectomy and transannular patch are recommended, usually with an open heart procedure.13,26 There is no commissural fusion in these
infants, and no commissures to tear open, so
they do not benefit from balloon dilatation. 31
Most patients with dysplastic valves are not
neonates, however,16 as we confirmed. We
would also choose valvectomy with inflow
occlusion if faced with a clearcut preoperative
diagnosis of dysplastic anatomy.

Surgical closed valvotomy is very
similar to balloon valvuoplasty in that both use
blind, forceful methods to break open and
dilate the valve. We see no reason therefore
to recommend surgical dilatation unless the
percutaneous method is unavailable or has
failed. The failure rate of balloon dilatation is
likely to decrease as experience increases and
equipment improves, even in more difficult
patients with non-dilated ventricles.22-24

Acceptable long term results (58% of patients
not needing reoperation) for one good dilata-
tion may be predicted even when the procedure
is performed in neonates.

1 Brock R. The surgical treatment of pulmonary stenosis.
 Br Heart J 1961;23:337-56.
2 Milo S, Yellin A, Smolinsky A, et al. Closed pulmonary
 valvotomy in infants under six months of age: report of 14
 consecutive cases without mortality. *Thorax* 1980;35:
 814-6.
3 Fleiss JL. Statistical methods for rates and proportions. *John
4 Gross AJ, Clark VA. Survival distributions: reliability
 applications in the biomedical sciences. New York: John
 Willey, 1975.
5 Lee ET. Statistical methods for survival data analysis.
 Belmont, California: Lifetime Learning Publications,
 1980.
6 Polansky DB, Clark EB, Doby DB. Pulmonary stenosis in
 infants and young children. *Am Thorac Surg* 1985;
 39:159-36.
7 Talbert J, Morrow AG, Collins NP, et al. The incidence
 and significance of pulmonic regurgitation after
8 Keith JD, Rowe KD, Vlad P. *Heart disease in infancy and
9 Mustard WT, Jain SC, Trustor GA. Pulmonary stenosis in
10 Danielson GK, Exarchos ND, Weidman WH, McGoon DC.
 Pulmonic stenosis with intact ventricular septum: surgical
 considerations and results of operations. *J Thorac
11 Awariefo SO, Clark DR, Pappas G. Surgical approach to
 critical pulmonary valve stenosis in infants less than 6
12 Sade RM, Crawford FA, Hohn AR. Inflow occlusion for
13 Kirklin JW, Barrett-Boyes BG. Pulmonary stenosis with
 intact ventricular septum. In: *Cardiac surgery* New York:
14 Fyler DC, Buckley LP, Hellenbrand WE, et al. Report of the
 New England regional infant cardiac program [abstract].
 Pediatrics 1980;65(suppl):447.
15 Stark J, De Leval M. Right ventricular outflow tract obstruc-
tion. In: *Surgery for congenital heart defects*. New York:
16 Merrill WH, Shuman TA, Graham TP, et al. Surgical
 intervention in neonates with critical pulmonary stenosis.
17 Daskalopoulos DA, Pieroni DR, Gingell RL, et al. Closed
 transventricular pulmonary valvotomy in infants.
18 Coles JC, Freedom RM, Olley PM, et al. Surgical
 management of critical pulmonary stenosis in the neonate.
19 Gersony WM, Bernhard WF, Nadar AS, Gross RE. Diag-
nosis and surgical treatment of infants with critical
 pulmonary outflow obstruction. *Circulation* 1967;35:
 765-76.
20 Miller GAH, Restifo M, Shinebourne EA, et al. Pulmonary
 stenosis with intact ventricular septum and critical pulmonary
 stenosis presenting in first month of life. *Br Heart J*
21 Weldon CS, Hartmann AF, McKnight RC. Surgical
 management of hypoplastic right ventricle with pulmonary
 stenosis or critical pulmonary stenosis and
 intact ventricular septum. *Ann Thorac Surg* 1984;37:
 12-24.
22 Caspy J, Coles JC, Benson LN, Freedom RM, Burrows PE,
 Smallhorn JF, et al. Management of neonatal critical pulmon-
 ic stenosis in the balloon valvotomy era. *Ann Thorac
23 Zeeli B, Keene JR, Fellows RE, Lock JF. Balloon dilatation
 of critical pulmonary stenosis in the first week of life. *J Am
24 Giglia TM, Matthaius A, Mandell VS, Sanders SP, Lock JE,
 Mayer JE. Influence of right heart size on outcome
 under inflow stasis for isolated pulmonary stenosis.
26 Tandon R, Nadar AS, Gross RE. Results of open heart
 surgery in patients with pulmonic stenosis and intact
 pulmonic stenosis resulting from dysplasia of the valve.
28 Jeffery RF, Moller JH, Amplatz K. The dysplastic
 pulmonary valve: a new reomthropomorphic entity. *AJR*
29 Schieken RM, Friedman S, Pierce WS. Severe congenital
 pulmonary stenosis with pulmonary valvular dysplasia
30 Watkins L, Donahoe JS, Harrington D, et al. Surgical
 management of congenital pulmonary valve dysplasia.
31 Musewe NN, Robertson MA, Benson LN, et al. The
 dysplastic pulmonary valve: echocardiographic features
 and results of balloon dilatation. *Br Heart J* 1987;57:
 364-70.
32 Vancini M, Roberts KD, Silove ED, et al. Surgical treat-
 ment of congenital pulmonary stenosis due to dysplastic
 pulmonary leaflets and small valve annulus. *J Thorac
33 Freed MD, Rosenthal A, Bernhard WF, et al. Critical
 pulmonary stenosis with a diminutive right ventricle in
34 Goor DA, Lillehei CW. Congenital malformations of the
 valvotomy alone for pulmonary stenosis: results in
 children with and without muscular infundibular
Surgical closed pulmonary valvotomy for critical pulmonary stenosis: implications for the balloon valvuloplasty era.

A Smolinsky, R Arav, J Hegesh, A Lusky and D A Goor

Thorax 1992 47: 179-183
doi: 10.1136/thx.47.3.179

Updated information and services can be found at:
http://thorax.bmj.com/content/47/3/179

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/