modulate components of the immune response, particularly those causing tissue destruction, are important and should be pursued.

GILLIAN AINSLIE
ERIC BATEMAN
Respiratory Clinic,
Groot Schuur Hospital,
Observatory,
7925 Cape, South Africa

Variability of inspired oxygen concentration with nasal cannulas

The paper by Dr EA Bazuaye and others (August 1992;47:609-11) on inspired oxygen concentrations from nasal cannulas (“prongs”) is welcome. The potential hazards of nasal oxygen are underappreciated, as we found when asking junior medical staff how they use oxygen during exacerbations of chronic ventilatory failure. This inquiry followed a particularly spectacular example of “prong poisoning,” where nasal oxygen at 1 litre per minute delivered an FIO2 conservatively estimated at 40%. Nearly half the doctors we asked thought nasal oxygen was as good as or better than a Venturi mask in these circumstances, and only one appreciated that nasal cannulas deliver an FIO2, which can rise as respiratory failure worsens and ventilation fails. Our case supports the suggestion of Dr Bazuaye and colleagues that nasal cannulas may be more hazardous during acute exacerbations of ventilatory failure, and sustains their statement that nasal cannulas are “unsatisfactory in emergency conditions.”

AUTHORS’ REPLY We thank Dr Sarniak for showing interest in our paper. His assertion that chest drains inserted after thoracic trauma inadvertently require suction is not, in fact, supported by the reference he cites. In our experience this is necessary only in cases where there are persistent pneumothorax, usually a massive air leak. Pleural suction is not readily available at the roadside or battlefield and the advantages that drainage bags have over underwater seals in these circumstances are obvious. This is supported by recent military experience in wartime conditions.

Patients were not entered into the trial if it was known that postoperative pleural suction would be essential. Randomised patients who subsequently required suction were retained in the study and the results were analysed according to the intended treatment. This is an accepted method for reducing bias in this type of clinical trial.

There are inherent difficulties in carrying out a trial comparing such different methods of treatment. It was not possible to perform a blind study. Nevertheless, we believe that it is important to attempt to assess different techniques in a randomised fashion rather than basing management on uninformled opinion and speculation. The fact that drainage bags were found to be safe when used after elective surgery, which is an effect of thoracic trauma, should give clinicians the confidence to use them, when required, in emergency conditions.

ANJ GRAHAM
JA MCGUIGAN
Northern Ireland Regional Thoracic Anaesthetic Department,
Royal Victoria Hospital,
Belfast BT12 6BA

Randomised clinical trial of chest drainage systems

We should like to comment on the article by Dr ANJ Graham and others (June 1992;47:461-2). The study sample consisted of only postoperative cases, though the authors have extended the recommendation of a Portex drain to trauma and emergencies where the risk of tube blockage is higher and low pressure negative suction is invariably required. In selecting their sample the authors have excluded patients who would require suction, but in the discussion they have analysed the requirement of suction in two groups. This would be a major confounding factor in the study. The reasons for reduction in “time to sitting” and in morbidity with a Portex drain, although drainage with bottles was adequate, are not discussed. As the drainage systems were not “blind” and a was variable encouragement for mobilisation by the nursing staff, there is scope for a bias for mobilisation of the two study groups and thus in the observations. The major factors in the early mobility of patients and discharge would be the type of underlying and associated illness and complications. Considering the requirement of suction and the possibility that Portex tubes can fail out, the authors’ recommendations need further evaluation.

R M SARNIAK
Department of Pulmonary Medicine,
Postgraduate Institute of Medical Education and Research,
Chandigarh-160 012, India

Authors’ Reply

We thank Dr Sarniak for showing interest in our paper. His assertion that chest drains inserted after thoracic trauma inadvertently require suction is not, in fact, supported by the reference he cites. In our experience this is necessary only in cases where there are persistent pneumothorax, usually a massive air leak. Pleural suction is not readily available at the roadside or battlefield and the advantages that drainage bags have over underwater seals in these circumstances are obvious. This is supported by recent military experience in wartime conditions.

Patients were not entered into the trial if it was known that postoperative pleural suction would be essential. Randomised patients who subsequently required suction were retained in the study and the results were analysed according to the intended treatment. This is an accepted method for reducing bias in this type of clinical trial.

There are inherent difficulties in carrying out a trial comparing such different methods of treatment. It was not possible to perform a blind study. Nevertheless, we believe that it is important to attempt to assess different techniques in a randomised fashion rather than basing management on uninformed opinion and speculation. The fact that drainage bags were found to be safe when used after elective surgery, which is an effect of thoracic trauma, should give clinicians the confidence to use them, when required, in emergency conditions.

ANJ GRAHAM
JA MCGUIGAN
Northern Ireland Regional Thoracic Anaesthetic Department,
Royal Victoria Hospital,
Belfast BT12 6BA

Barcelona’s asthma epidemics

With regard to Dr C Picado’s “For Discussion” paper (March 1992;47:197-200), we propose that exogenous 15-lipoxygenase enzyme from soybean modulates the severity of the asthma response in soybean induced asthma, since soybean is the world’s richest known source of lipoxygenase enzyme and is causal in epidemic asthma with the unusual clinical features described by Dr Picado.

Plants lipoxygenases are common in nature and could readily be detected during bulk handling of dry soybean. After antigen challenge a product of the 15-lipoxygenase pathway of arachidonic acid metabolism—namely, (5S)-hydroxy-5,8,11,14-eicosatetraenoic acid (15-HETE)—is observed in large amounts in bronchoalveolar lavage fluid from patients with chronic stable asthma. Eosinophil suspensions incubated with ionophore and granulocytes when stimulated in the presence of 15-HETE produce lipidoxin A, an eosinophilic mediator of asthma. Lipidoxin A could be one of the mediators of the current asthma epidemic described by Dr Picado.

AUTHORS’ REPLY

We thank the authors of this letter for their interest in our paper. We agree with them that soybean protein has caused many asthma epidemics in the past, and we propose that exogenous lipoxygenase enzyme from soybean modulates the severity of the asthma response in soybean induced asthma, since soybean is the world’s richest known source of lipoxygenase enzyme and is causal in epidemic asthma with the unusual clinical features described by Dr Picado.

Plants lipoxygenases are common in nature and could readily be detected during bulk handling of dry soybean. After antigen challenge a product of the 15-lipoxygenase pathway of arachidonic acid metabolism—namely, (5S)-hydroxy-5,8,11,14-eicosatetraenoic acid (15-HETE)—is observed in large amounts in bronchoalveolar lavage fluid from patients with chronic stable asthma. Eosinophil suspensions incubated with ionophore and granulocytes when stimulated in the presence of 15-HETE produce lipidoxin A, an eosinophilic mediator of asthma. Lipidoxin A could be one of the mediators of the current asthma epidemic described by Dr Picado.

Barcelona’s asthma epidemics

With regard to Dr C Picado’s “For Discussion” paper (March 1992;47:197-200), we propose that exogenous 15-lipoxygenase enzyme from soybean modulates the severity of the asthma response in soybean induced asthma, since soybean is the world’s richest known source of lipoxygenase enzyme and is causal in epidemic asthma with the unusual clinical features described by Dr Picado.

Plants lipoxygenases are common in nature and could readily be detected during bulk handling of dry soybean. After antigen challenge a product of the 15-lipoxygenase pathway of arachidonic acid metabolism—namely, (5S)-hydroxy-5,8,11,14-eicosatetraenoic acid (15-HETE)—is observed in large amounts in bronchoalveolar lavage fluid from patients with chronic stable asthma. Eosinophil suspensions incubated with ionophore and granulocytes when stimulated in the presence of 15-HETE produce lipidoxin A, an eosinophilic mediator of asthma. Lipidoxin A could be one of the mediators of the current asthma epidemic described by Dr Picado.

NOTICE

Latin American conference on cystic fibrosis

The fifth Latin American Cystic Fibrosis Conference is to take place in Recife, Brazil, on 3-7 April 1993. Further information can be obtained from Dr Fernando Silveira, Hospital do Alagoas, Rua Silveira, 235, Recife-PE, Brazil 50001 (081) 241-2074.
Barcelona's asthma epidemics.

A Judd and J Docherty

Thorax 1992 47: 1086
doi: 10.1136/thx.47.12.1086-c

Updated information and services can be found at:
http://thorax.bmj.com/content/47/12/1086.4.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/