Oxygen transport: the relation between oxygen delivery and consumption

R M Leach, D F Treacher

The unifying concept of oxygen transport has until recently been neglected by both cardiologists and respiratory physicians. With the increasing part played by both disciplines in the care of the critically ill, however, this attitude is changing. The primary function of the heart and lungs is to generate a flow of oxygenated blood to the tissues to sustain aerobic metabolism. The main requirements of this system are that it should be energy efficient, so that unnecessary cardiorespiratory work is avoided, and that it should be sensitive to the fluctuating demands of cellular metabolism. Secondly, metabolic demand and distribution should be matched regionally at rest, during exercise, and in different disease states. Thirdly, oxygen should be able to pass efficiently across the extracellular tissue matrix. The mechanisms controlling oxygen distribution are incompletely understood, but are almost certainly important in determining clinical outcome in the critically ill patient.

Although the relation between oxygen delivery (Do2) and consumption (Vo2) has not been clearly established, these variables are often measured. In a population of critically ill patients in whom Vo2 is limited by Do2, the state of so-called "pathological supply dependency." During recent years many of the publications on critical care, and indeed practice in leading intensive care units, have emphasised the importance of raising Do2 to "supranormal" levels in an attempt to satisfy the increased metabolic demands of these patients. This practice has been justified by the observation that increased Do2 improves oxygen debt and outcome in postoperative surgical patients requiring intensive care. No one dispute that restoring blood volume to improve Do2 in the severely hypovolaemic patient must be beneficial. Controlled trials, however, examining the influence of such strategies on clinical outcome in patients with more complex conditions, suffering from sepsis, cardiovascular collapse, and hypoxic hypoxaemia, have produced conflicting data. Perhaps the concept of global oxygen delivery has failed to emphasise the importance of the regional distribution of blood flow, particularly to the splanchnic and renal vascular beds, which may be more important in determining clinical outcome.

This article reviews current ideas about the relation between Do2 and Vo2, the physiological mechanisms controlling regional Do2, and their relevance to critical illness and currently used therapeutic interventions.

Physiology of oxygen transport

GLOBAL OXYGEN DELIVERY

Under normal resting conditions global Do2 (defined as the product of cardiac output and arterial oxygen content) is more than adequate to meet tissue oxygen demands for aerobic metabolism (fig 1). Oxygen consumption or uptake (Vo2) is determined by cellular requirements and is classically considered to be independent of Do2 unless the latter falls below a critical level (cDo2; fig 2A, point B). Below this point further reductions in Do2 result in a fall in Vo2. The slope of the line relating uptake and delivery defines the oxygen extraction ratio (ERo2), which is an index of the efficiency of total tissue extraction of oxygen from the extracellular environment. Thus above cDo2 Vo2 is supply independent and ERo2 falls progressively as Do2 rises. Below cDo2, a state of so called supply dependency of oxygen uptake exists, the extent of which is determined by the slope of the line (ERo2). Individual organs have different values of ERo2, which may vary with stress and in different disease states. A more complete understanding of the global and regional Do2-Vo2 relationships would be a major advance in the management of the critically ill.

TISSUE OXYGEN DELIVERY

Oxygen delivery to individual cells is usually considered in terms of convective and diffusive oxygen transport. Convective oxygen transport refers to the bulk movement of oxygen in blood and includes the regional distribution of cardiac output to individual organs and the mechanisms regulating the tissue microcirculation. This is determined by a complex interaction of endothelial, neural, and metabolic influences on arteries, small resistance arterioles, and precapillary sphincters. Nevertheless, in the normal state and in clinical conditions convective transport depends predominantly on cardiac output. Diffusive oxygen transport refers to the transfer of oxygen molecules from blood through the extracellular matrix down the capillary-intracellular oxygen tension (Pao2) gradient and it depends on arterial oxygen tension (Pao2). Analysis of Do2
should evaluate both mechanisms as failure of either component results in tissue hypoxia.

The relative importance of convective and diffusive oxygen transport in limiting \(\dot{V}_O_2 \) is controversial. As the oxygen content of blood perfusing a limb at different flow rates is gradually reduced, \(\dot{V}_O_2 \) and \(ERO_2 \) are greater for a given \(DO_2 \) under low flow conditions. This suggests that \(\dot{V}_O_2 \) is diffusion limited rather than convection limited in progressive hypoxaemia. In contrast, other workers have shown that the point at which \(\dot{V}_O_2 \) falls is similar whether \(DO_2 \) is decreased by progressive anaemia, hypoxaemia, or a reduction in blood flow, and that \(\dot{V}_O_2 \) correlates with \(DO_2 \) but not with venous \(PO_2 \). These observations would suggest a dominant role for convective transport. To clarify this paradox the theoretical relation between tissue oxygen supply and uptake was examined recently by using the Krogh tissue cylinder model (fig 3). In this hypothetical model, provided that the intercapillary distances were less than 80 \(\mu m \), \(\dot{V}_O_2 \) began to fall at a similar level of \(DO_2 \) (c\(DO_2 \)), independent of whether \(DO_2 \) was progressively reduced by anaemia, hypoxaemia, or a fall in blood flow. As the intercapillary distances were progressively increased above 80 \(\mu m \) there was a rightward shift in c\(DO_2 \) and a flattening of the response gradient. These changes in the \(\dot{V}_O_2-DO_2 \) relationship were more dramatic when the reduction in \(DO_2 \) was achieved by hypoxaemia than with anaemia or a fall in flow. This suggests that the relative contributions of convective and diffusive transport are determined by capillary density, which may vary between organs, with tissue oedema, and with disease states. This theoretical analysis may explain the earlier contradictory results.

Relation between oxygen supply and oxygen consumption

Defining the \(DO_2-V_O_2 \) relationship in individual subjects over a sufficiently wide range of values is extremely difficult for practical and ethical reasons. Consequently, plotting complete \(DO_2-V_O_2 \) relationships has been impossible, particularly in healthy individuals, though clinical requirements have permitted some progress to be made in patients with certain disease states. This lack of data has generated many hypotheses, but no scientifically secure conclusion regarding the phenomenon of supply dependency of oxygen uptake. Our present understanding is founded on evidence (a) exercise in healthy human volunteers, (b) animal experiments and patients undergoing surgery, and (c) critically ill patients.
Figure 3 Predicted effect of changes in intercapillary distance (perfused capillary density) on critical oxygen delivery. Reductions in oxygen delivery were achieved by (A) progressive anaemia, (B) hypoxia, and (C) stagnant hypoxia. The numbers on the plots correspond to the intercapillary distances in micrometres. When intercapillary distances were short (40–80 μm), similar levels of critical oxygen delivery were seen for all three forms of hypoxia. When intercapillary distances were over 80 μm tissue oxygen uptake (VO₂) was reduced to a greater extent by hypoxic hypoxia than by anaemic or stagnant hypoxia. (Reproduced from Schumacker and Samel by courtesy of the Journal of Applied Physiology.)

EVIDENCE FROM EXERCISE IN HEALTHY HUMAN VOLUNTEERS

The cardiorespiratory system is extremely effective at augmenting VO₂ to satisfy sudden increases in metabolic demand required during exercise. Immediate increases in cardiac output can rapidly increase the basal DO₂ five fold in the healthy individual. As VO₂ may increase 10 fold, however, during maximal exercise and ERO₂ also rises at the onset of exercise, a progressive widening of the arteriovenous oxygen difference occurs. At rest the ERO₂ is about 0.3 but can increase to 0.8 during maximal exercise in healthy, well trained subjects. This is attributed to an improvement in diffusive oxygen transport mediated by increases in nutritive capillary densities. When the metabolic demands of increasing exercise can no longer be sustained by increases in DO₂ or ERO₂, the anaerobic threshold is reached and blood lactate concentrations rise. The ERO₂ at the anaerobic threshold is about 0.6, which implies that above this level oxygen uptake becomes diffusion limited. ERO₂ is improved by training, which suggests an improvement in the diffusion reserve (resulting from increased numbers of mitochondria or microvessels) or more efficient regional distribution of blood flow to the active tissues.

EVIDENCE FROM ANIMALS AND PATIENTS UNDERGOING SURGERY

The response of the cardiopulmonary system to decreasing oxygen availability is more complex. The evidence for the classical two phase relationship between VO₂ and DO₂ (fig 2A) rests almost exclusively on animal studies. These have shown that cDO₂ varies from 6 to 10 ml/kg/min, with an ERO₂ of 0.5–0.8. In the only study in relatively healthy human subjects under normal conditions, a biphasic relationship between VO₂ and DO₂ was observed in 58 patients undergoing coronary artery bypass surgery after the induction of anaesthesia, but before the start of cardiac bypass. Analysis of 99 DO₂/VO₂ points revealed that VO₂ was constant for values of DO₂ from 330 to 700 ml min⁻¹ m⁻². Below the cDO₂ (330 ml min⁻¹ m⁻²), which was similar to that found in animal studies, VO₂ fell with decreasing DO₂. The VO₂ in these patients was substantially lower than the basal levels recorded in animals and this was attributed to anaesthesia. At the cDO₂, the apparent ERO₂ was only 0.33, a figure well below that observed in animal experiments.

EVIDENCE FROM CRITICALLY ILL PATIENTS

In the critically ill most investigators have reported a modified DO₂-VO₂ relationship, suggesting that under pathophysiological conditions DO₂ and VO₂ continue to increase above the physiological level for cDO₂ (fig 2B). Therefore VO₂ remains supply limited at a normal or even increased DO₂. In addition, ERO₂ does not increase, as is observed during exercise, or with progressive reductions in DO₂, as reported in animal experiments. The resulting single phase, curvilinear relationship is termed pathophysiological supply dependency (fig 2B) and implies that a reduction in DO₂ cannot be compensated for by an increase in ERO₂; VO₂ therefore must fall. This relationship has been reported both in animal models of sepsis and during critical illness in man. It was first observed in patients with the adult respiratory distress syndrome (ARDS) and was subsequently identified in patients with septic and hypovolaemic shock, congestive cardiac failure, pulmonary hypertension, and chronic obstructive airways disease. The linear relationship has important clinical implications, because with a rightward shift and downward displacement of the VO₂:DO₂ relationship, as illustrated in figure 2B, VO₂ is reduced at a normal DO₂. At a simplistic level, this suggests that an increase in total DO₂ by manipulation of the circulation may be beneficial. If, however, VO₂ is diffusion limited treatment should be directed at improving PaO₂ rather than increasing DO₂. Factors affecting the gradient and movement of the DO₂-VO₂ relationship
relationship in health and disease clearly require further investigation to determine the
prognostic significance and implications of such changes. The basis for the belief that the
curvilinear relationship identified in patholo-
gical supply dependency is distinct from the
classical biphasic relationship reported in
health is tenuous.

IS THE V02-D02 RELATIONSHIP BIPHASIC OR LINEAR?

Despite the biphasic V02-D02 relationship in animal experiments, it has recently been sug-
gested that in man both the physiological and
the pathological relationships are linear. In
a recent review Dantzker and colleagues
proposed the hypothetical interaction of D02 and
V02 shown in figure 4. Experiments during
exercise provide strong evidence to support
that part of the hypothetical line to the right of
point A. Below point A the classical relation-
ship would demand ERO2 values of 0-5 to 0-7 to
achieve the plateau phase. In human studies,
however, the maximum values for ERO2 both in
disease states (0-25 to 0-45) and in relative health
(0-33) are much lower. These low ERO2 values
argue against the existence of the point cD02
and a plateau phase. If a curvilinear relation-
sip similar to that observed in "pathological
supply dependency" existed in healthy indi-
viduals this would satisfy the requirement for
arterial oxygenation.27 Acute oxygen therapy
produces a fall in cardiac index and D02, but an
increase in Pao2, implying improved tissue oxygenation.27

**Clinical implications of the global
D02-V02 relationship**

Patients admitted to an intensive care unit who
show the pattern of pathological supply depen-
dency have a 70% mortality, compared with a
30% mortality in those who do not. Similarly, in
mechanically ventilated patients with sepsis
the prognosis was found to be worse if V02
increased in response to a rise in D02 produced
by an infusion of prostacyclin (that is, patho-
logical supply dependency). Shoemaker et al, in
a large series of postoperative patients admit-
ted to intensive care, empirically set "supra-
normal" D02 and V02 targets and reported an
improvement in outcome.

This evidence has resulted in the current
treatment for "goal directed" treatment requiring
that the cardiac index should be > 4.5 l
min⁻¹ m⁻², D02 > 600 ml min⁻¹ m⁻², V02 > 170
ml min⁻¹ m⁻², and venous oxygen saturation
(SvO2) > 70%.'9 This approach to manage-
ment assumes that the following conditions
certain: (a) V02 can be increased by raising D02
to supranormal levels; (b) an increase in V02
reduces tissue hypoxia; (c) an increase in D02
improves outcome. The validity of these
statements, on the other hand, is likely to depend
on a proper understanding of the patholo-
gical process and whether there is a true
deficit of either convective or diffusive oxygen
transport. The importance of these two factors
in oxygen delivery is examined by considering
the relationships between D02 to V02.

**Studies in patients with chronic
obstructive airways disease**

Patients with hypoxic chronic obstructive air-
ways disease have both a failure of arterial
oxygenation and abnormalities of cardiac out-
put. Pathological supply dependency has been
reported in both chronic obstructive airways
disease and pulmonary hypertension.3 Three
years after the development of peripheral
oedema in hypoxaemic cor pulmonale survival
is less than 50%.

A fall in oxygen consumption (P02, PVO2,
and venous oxygen tension (PV02). Acute
oxygen therapy produces a fall in cardiac index and
D02, but an increase in Pao2, implying improved
It is possible that a more detailed
understanding of the underlying pathology
in these patients may allow for a more
appropriate approach to oxygen therapy.

STUDIES IN CRITICALLY ILL PATIENTS

The position in critically ill appears to be dif-
ferent. Several reports have suggested that
improving V02 by increasing D02 to a point well
above cD02 may confer clinical benefit.35

Empirical studies by Shoemaker and
colleagues showed that increasing cardiac output,
D02, V02, and blood volume above normal
improved postoperative patients improved outcome.36
Maintaining a high D02 also improves V02 and
reverses lactic acid production.3 These studies
suggest that a high D02 should be maintained
whenever possible, but this generalisation can-
not allow for either specific aspects of the
underlying pathology or the possible complica-
tions of strategies used to increase D02. In
ARDS attempts to increase D_O_2 by raising filling pressures with volume expansion will have detrimental effects due to increased alveolar capillary permeability. Any increase in pulmonary artery occlusion pressure will increase lung water, further impairing gas exchange and lung compliance and leading to an increase in the fractional inspired oxygen (F_{IO_2}) requirement and airway pressures. The same increase in vascular permeability, albeit less clinically apparent, affects all tissues. Therefore volume loading may increase extra-vascular tissue water and potentially compromise diffusive oxygen transport.35

A second consideration in ARDS is the frequent need for positive end expiratory pressure (PEEP) to reduce the alveolar-arterial oxygen gradient and F_{IO_2} requirements. The effect of increasing PEEP on D_O_2 is unpredictable but usually a net fall occurs owing to reduced cardiac output even if P_AO_2 rises. This pattern of response provides an interesting model with which to study the relative contribution of diffusive and convective transport. Carlile and Gray investigated the effect of opposite changes in cardiac output and P_AO_2 on D_O_2, V_O_2, and P_VO_2 and showed that in these circumstances V_O_2 was not supply dependent.34

MEASUREMENT ERRORS: MATHEMATICAL AND PHYSIOLOGICAL LINKAGE

The conflicting evidence concerning supply dependency in the critically ill may be explained by the different methods used for measuring V_O_2. Studies in patients after surgery and in those with sepsis and ARDS have shown that, although D_O_2 correlated well with V_O_2 calculated from cardiac output and difference in arteriovenous oxygen content (indirect Fick method), the correlation was much weaker when V_O_2 was calculated from direct measurements of ventilatory minute volume and inspired and mixed expired oxygen concentration by mass spectrometer or metabolic cart.35-37 It was suggested that the D_O_2/V_O_2 relationship seen when V_O_2 is calculated by the indirect Fick method is an artefact related to the use of common variables (cardiac output and arterial oxygen content) in the calculation of both V_O_2 and D_O_2.35 Errors in measuring the two variables are therefore effectively coupled, producing apparent supply dependency. The effect of this mathematical coupling depends on the size of the errors in the measurement of the variables concerned.36 In studies with a small range of D_O_2 the problems are exaggerated.39 If measurement errors are large, as may be the case during mechanical ventilation, the chance that a true pathological supply dependency exists is diminished. Theoretical examination, however, suggests that the linear relationship between D_O_2 and V_O_2 cannot be ascribed entirely to mathematical coupling.

Physiological coupling may also be responsible for generating a false association between variables. If, for example, inotropic support is used to increase D_O_2, most of the agents available not only increase cardiac output but also stimulate metabolism, thereby increasing V_O_2 directly.40 Data obtained in such circumstances could be misinterpreted as evidence of supply dependency. Such treatment could hardly be viewed as beneficial as it is similar to fever in its effect on V_O_2/D_O_2. Pain, anxiety, endogenous catecholamine release, and physical activity produce similar changes.

Doubts about a simple global supply dependency relationship have also been raised by personal observations in patients with severe sepsis characterised by systemic hypotension with high cardiac output and D_O_2. In these patients with much reduced systemic vascular resistance treatment with noradrenaline increased not only arterial pressure but also the incidence of clinical indices of organ function. Independent measurements of V_O_2 by indirect calorimetry using a mass spectrometer and of D_O_2 from thermodilution cardiac output and arterial oxygen content showed that, with the introduction of noradrenaline, while D_O_2 remained unchanged or even fell, V_O_2 increased (DFT, unpublished observations). This evidence of an inverse relation between D_O_2 and V_O_2 in certain circumstances could be explained by regional redistribution of flow and would suggest that such changes may be more important than absolute increases in D_O_2.

Clinical implications of regional D_O_2/V_O_2 relationships

In the critically ill patient the regional distribution to the organs of the total oxygen delivered varies considerably with the underlying pathological process. Both clinical and theoretical evidence shows that P_AO_2 is more important than D_O_2 in maintaining tissue oxygenation, particularly in respiratory failure with hypoxaemia.39 In these circumstances treatment that improves peripheral distribution and cellular utilisation of oxygen is more appropriate.

Induction of endotoxaemia or septicemia in animal experiments has shown that the $c_D_O_2$ is higher and the $E_R_O_2$ reduced to a greater extent in the splanchnic than in the skeletal muscle circulation. Splanchnic perfusion is selectively reduced by the endogenous vasoconstrictors released in critical illness and the gut mucosa is further compromised by the failure to sustain enteral feeding. The fall in regional D_O_2 with increased metabolic demands and reduced $E_R_O_2$ results in ischaemia of the splanchnic organs, particularly the gut. This renders the gut mucosa “leaky,” allowing absorption of endotoxin and translocation of bacteria into the portal circulation. This “sequence of events” means that a massive toxic load enters the portal circulation, which first overwelms the liver defences and then promotes capillary endothelial damage in the lung (ARDS) and the development of multisystem organ failure.

The most common cause of late death in the intensive care unit is multisystem organ failure, and recent evidence has shown that treatment aimed at maintaining or improving splanchnic perfusion and tissue oxygenation reduces mortality and improves outcome.1

Therapeutic strategies to manipulate D_O_2/V_O_2 relationships

INOTROPIC SUPPORT

Catecholamines, including dobutamine and adrenaline, improve cardiac output and are
reported to improve survival in septic shock.41 In addition, they may have important effects on regional vascular resistance, thereby improving oxygen diffusion and tissue ER0_2. Dobutamine, however, may reduce splanchnic perfusion at the doses required to increase global DO_2 in sepsis, emphasising the desirability of measuring regional perfusion if therapeutic benefits are to be assured.3 Inotropes may also induce physiological linkage, increasing cardiac work and VO_2.42,43 The new adrenergic and dopaminergic agent dopexamine hydrochloride has no adrenergic effects and may selectively increase renal and splanchnic blood flow.44,45 The potential value of region specific inotropic agents is considerable but needs further evaluation.

VOLUME INFUSION

Many trials have examined the effects of volume loading to increase cardiac output by raising filling pressures. Volume loading has been shown to increase cardiac output and total DO_2 and to improve disease outcome postoperatively.1 Nevertheless, there are two major problems with the indiscriminate use of this strategy. Firstly, complications occur in patients with increased vascular permeability, as already discussed. Secondly, many critically ill patients, particularly those with sepsis, have severely impaired myocardial contractility, with flat myocardial function curves, so that the stroke volume and hence gain in cardiac output from an increase in filling pressure is minimal. This results in all the disadvantages of volume loading in exchange for trivial improvements in DO_2.

VASODILATORS

Vasodilators increase oxygen transport without increasing cardiac work or producing the problems of physiological linkage,46 but in many critically ill patients systemic vascular resistance is already low, and poor organ perfusion resulting from systemic hypotension is a major concern. Even if vasodilators are tolerated without overt haemodynamic compromise, their effects on regional distribution are unpredictable and in certain circumstances may jeopardise blood flow in vital organs, even though overall DO_2 is increased.47 The use of vasodilators to reveal covert oxygen debt by showing whether VO_2 increases in response to DO_2 has been recommended,48 but no convincing evidence exists to show that vasodilators improve outcome.

PERIPHERAL CIRCULATION

Manoeuvres that shift the oxygen dissociation curve to the right will increase tissue oxygen uptake. In this regard the adverse effects of a raised temperature and acidosis are well known but the importance of correcting hypophosphataemia is frequently overlooked.49

Most methods for improving tissue oxygenation by influencing the microcirculation are at present experimental. The endothelium has been shown to have an important influence on vascular tone and vasoreactivity through the release of both constricting and relaxing factors. The endothelial cell damage associated with septic shock and ARDS is likely to have an important influence on tissue perfusion. The most important of the endothelium derived relaxing factors is nitric oxide. Recent studies have shown that inhibition of the synthesis of endothelium derived relaxing factors may be beneficial in maintaining vascular tone in septic shock.48 Antitoxin antibody has recently been shown to reduce mortality in patients with Gram negative bacteraemia and particularly those with septic shock; though the mechanism of action in terms of oxygen transport and regional perfusion is unclear.49 Other antioxidants, such as prostaglandin E_1, may improve DO_2 and VO_2 but have no influence on mortality.50

FACTORS INFLUENCING VO_2

It is important to avoid factors which raise metabolic demand, with an inevitable increase in VO_2 and DO_2, but which may aggravate rather than relieve tissue hypoxia. Principal among these are infection, a high temperature, drugs (β agonists), excess physical activity (physiotherapy, restlessness, shivering, fighting ventilator), septic complications (pain, anxiety), and the feeding regimen (excess intravenous glucose).

Measures of the adequacy of tissue oxygenation

LACTATE CONCENTRATION

Blood lactate concentration may be raised or normal in the presence or absence of hypoxia because the metabolic pathways utilising glucose during aerobic energy production may be blocked at several points.51 If phosphofructokinase is inhibited, glucose utilisation is prevented without an increase of lactate. In contrast, in the hypermetabolism of sepsis inactivation of pyruvate dehydrogenase prevents utilisation of pyruvate in the citric acid cycle, resulting in production of lactate, accumulation of pyruvate, and aerobic metabolism of fat and protein.52 Recent studies have shown that endotoxin can directly inactivate pyruvate dehydrogenase, resulting in lactate production in the absence of tissue hypoxia.53

With an unfavourable cellular redox state, normal DO_2 may be associated with high lactate concentrations, but on the other hand if compensatory reductions in [ATP]/[ADP][Pi] or [NAD\(^+\)]/[NADH] occur then low lactate concentrations may be found with tissue hypoxia.54

Lactate is therefore not a reliable reflection of tissue hypoxia.

The blood lactate concentration also represents a balance between production, as shown by perfusion, and consumption by hepatic, cardiac, and skeletal muscle metabolism.55 Clinically, arterial lactate concentrations are reported to vary inversely with DO_2,51 but the suggestion that pathological supply dependence occurs only when blood lactate concentrations are raised is incorrect as the same relationship may be found in patients with normal lactate concentrations.50 Clearly, the value of a single lactate concentration in the assessment of tissue hypoxia is at best question-
Serial lactate measurements, particularly if corrected for pyruvate, may be of greater value.

Tonometry
Much of the evidence presented here has suggested the probable importance of regional distribution of \(\text{DO}_2 \), particularly to the splanchnic bed. The introduction of the gastrointestinal tonometer to measure the intramucosal \(\text{pH} \) (\(\text{pHi} \)) promises to be an important advance. This may provide an early warning of inadequate splanchnic tissue oxygenation and guide resuscitation treatment. Recent reports have shown that a low \(\text{pHi} \) is associated with a poor prognosis, but if \(\text{pHi} \) increases with treatment the outcome is improved.1

Future developments
Further advances in the understanding of oxygen transport require the development of suitable techniques for measuring regional blood flow and tissue oxygenation. Examination of serial muscle biopsy specimens to study the histological changes, endothelial architecture, lactate concentrations, and ATP turnover may help to explain the microcirculatory changes controlling tissue perfusion.5 Magnetic resonance spectroscopy is a non-invasive method by which intracellular aerobic and anaerobic energy metabolism may be studied.58 Phosphorus-31 is a naturally occurring isotope concerned with energy transfer within the cell.57 P-magnetic resonance spectroscopy generates spectral peaks corresponding to the resonance of the phosphate bonds (\(\text{\^P} \text{P}, \text{\^P} \text{P}, \text{\^P} \text{P} \)), inorganic phosphate (\(\text{Pi} \)), and phosphocreatine (\(\text{PCr} \)), from which intracellular \(\text{pH} \) (\(\text{pHi} \)), oxidative phosphorylation, the rate of mitochondrial electron transport, and creatine kinase kinetics may be calculated.59 Despite appreciable technical difficulties and the practical problems presented by patients in intensive care, magnetic resonance spectroscopy promises considerable advances in the study of both aerobic and anaerobic metabolism and the metabolic response to critical illness. Positron emission tomography permits the non-invasive measurement of regional blood flow and organ function and should allow the response of the microcirculation to stress, hypoxaemia, and treatment to be assessed.60

Conclusion
Despite a bewildering array of publications, many aspects of oxygen transport remain an enigma. The relationship between \(\text{DO}_2 \) and \(\text{VO}_2 \) has not been clearly established and the current vogue of therapeutic manipulation is of unproved value in determining outcome in many conditions. Part of the confusion relates to problems in measuring \(\text{VO}_2 \) and future studies should report independently calculated values from the analysis of inspired and expired gas. In critically ill patients it is essential to define clearly the population and the pathological abnormality under study and to identify and account for potentially confounding metabolic factors. The recognition that tissue hypoxia varies between and within individual organs is focusing attention on the importance of regional oxygen delivery and the need for direct assessment of tissue oxygenation. Recent technological advances should allow further aspects of the enigma to be unravelled.

References

R M Leach and D F Treacher

Thorax 1992 47: 971-978
doi: 10.1136/thx.47.11.971

Updated information and services can be found at:
http://thorax.bmj.com/content/47/11/971.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes