Trends in respiratory mortality in England and Wales

Mr P N Lee and colleagues (September 1990;45:657–65) show that mortality rates for chronic obstructive lung disease are characterised by a cohort related peak (occurring 20–30 years later in women than in men) superimposed on a downward drift (in both sexes). The drift component has previously been interpreted as a cohort effect due to the declining incidence or severity of respiratory illness in early childhood, despite being presented as a period effect.1 However, as Mr Lee and his colleagues point out, linear drifts cannot be reliably assigned to period or cohort, and only non-linear trends can be partitioned in this way.2

Inspection of earlier mortality data for England and Wales during 1861–19303 suggests that deaths attributed to bronchitis (acute, chronic, and unspecified) began to decline simultaneously in all age groups around 1880 (figure), suggesting an influence of period of death rather than a cohort effect.

This decline occurred in both sexes (not shown) and preceded the decline in mortality due to bronchitis and pneumonia in early childhood by some 20 years (figure). Furthermore, there is no evidence of a downward inflection around 1900 in the cohort curves for chronic obstructive lung disease (figs 3 and 4 in Lee et al), as would be expected if childhood respiratory infection influenced subsequent respiratory death rates in the same cohorts.

Cause specific mortality rates for the first year of life are not available for the nineteenth century, and there must be considerable uncertainty about the interpretation of bronchitis death rates from a period when pulmonary tuberculosis was the leading cause of death. Nevertheless, these observations offer no support for the hypothesis that the remarkable underlying decline in mortality from chronic obstructive airways disease since the war is a result of changes in the incidence or severity of respiratory infection during infancy in the earlier part of this century.7

DAVID STRACHAN

Department of Public Health Sciences, St George’s Hospital Medical School, London SW17 0RE


Pericardial effusion after open heart surgery

In their review (September 1990;45:655–6) Drs A J Bryan and G D Angelini rightly emphasise the important diagnostic role of two dimensional echocardiography. They seem, however, to have overlooked certain relevant papers,8–10 which, in brief, show the following. (a) Large postcardiac surgery pericardial effusions causing tamponade are often loculated posteriorly, the anterior pericardial sac being virtually obliterated by intrapericardial adhesions. Tamponade resulting from such effusions are in fact more common in our experience9 than tamponade resulting from circumcardiac effusions in the postcardiac surgery setting. (b) Large posterior loculated effusions causing postcardiac surgery tamponade may present with certain specific echocardiographic manifestations: (i) pronounced distension of the oblique pericardial sinus; (ii) stretching of left pulmonary veins; (iii) paradoxical motion of the left ventricular posteriorinferior wall.11 (c) Tamponade tends to occur with somewhat smaller amounts of pericardial fluid in posterior loculated pericardial effusions than with the rule with large “medical” circumcardiac effusions.11 (d) In patients with large post-surgical pericardial effusions but little or no clinical or echo evidence of tamponade serial echocardiography has a useful role in management.1 If the effusion does not increase progressively in size and/or new circumcardiac effusions are not seen in the postcardiac surgery setting. Tamponade tends to occur with smaller amounts of fluid in this context is speculation, which may be true but which cannot be used to follow the natural tendency to resolution of post-operative effusions, though in the absence of clinical symptoms it does not alter management, which is conservative.

G D ANGELINI

AJ BRYAN

University Department of Cardiac Surgery, Northern General Hospital, Sheffield S7 7AU

AUTHORS’ REPLY

We welcome the interest in our editorial shown by Drs D’Cruz and Pai. We are aware of their work in this area; it was impossible, however, to make reference to all published work in a short editorial.

We agree that posterior effusions are much more common after surgery and more often cause tamponade within this setting. We acknowledge the echocardiographic features they have identified that suggest tamponade. The possibility that tamponade tends to occur with smaller amounts of fluid in this context is speculation, which may be true but which cannot be used to follow the natural tendency to resolution of post-operative effusions, though in the absence of clinical symptoms it does not alter management, which is conservative.

G D ANGELINI

AJ BRYAN

University Department of Cardiac Surgery, Northern General Hospital, Sheffield S7 7AU

Trends in respiratory mortality in England and Wales.

D Strachan

Thorax 1991 46: 149
doi: 10.1136/thx.46.2.149

Updated information and services can be found at:
http://thorax.bmj.com/content/46/2/149.1.citation

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes